
1

Slide 1

A* Heuristic
Search

Andrew W. Moore
Professor

School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of these slides. Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a significant portion of these
slides in your own lecture, please include this message, or the following link to the source repository of
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Slide 2

Overview
• The inadequacies of “Best First Greedy”

heuristic search.
• Good trick: take account of your cost of getting

to the current state.
• When should the search stop?
• Admissible heuristics
• A* search is complete
• A* search will always terminate
• A*’s dark secret
• Saving masses of memory with IDA* (Iterative

Deepening A*)

2

Slide 3

Let’s Make “Best first Greedy” Look
Stupid!

• Best –first greedy is clearly not guaranteed
to find optimal

• Obvious question: What can we do to
avoid the stupid mistake?

S A CB G

h=3 h=2 h=1

2

4

11 2

h=4 h=0

Slide 4

A* - The Basic Idea
• Best-first greedy: When you expand a node n, take each

successor n' and place it on PriQueue with priority h(n')

• A*: When you expand a node n, take each successor n'
and place it on PriQueue with priority

(Cost of getting to n') + h(n') (1)

Let g(n) = Cost of getting to n (2)

and then define…

f(n) = g(n) + h(n) (3)

3

Slide 5

A* Looking Non-Stupid

S A CB G

h=3 h=2 h=1

2

4

11 2

h=4 h=0

Slide 6

When should A* terminate?
Idea: As soon as it generates a goal state?
Look at this example:

S

D

B

CA

G

1 1

1

7

1

7

h = 7

h = 1

h = 2

h = 3

h = 0

h = 8

4

Slide 7

Correct A* termination rule:
A* Terminates Only When a Goal State Is Popped
from the Priority Queue

S

D

B

CA

G

1 1

1

7

1

7

h = 7

h = 1

h = 2

h = 3

h = 0

h = 8

Slide 8

A* revisiting states
Another question: What if A* revisits a state that was
already expanded, and discovers a shorter path?

S

D

B

CA

G

1 1

1

7

1

h = 7

h = 1

h = 2

h = 3

In this example a state that
had been expanded gets
re-expanded. How and
why?

1/2

h = 8

5

Slide 9

A* revisiting states
What if A* visits a state that is already on the queue?

S

D

B

CA

G

1 1

1

7

1

h = 7

h = 1

h = 8

h = 3

In this example a state that had
been on the queue and was
waiting for expansion had its
priority bumped up. How and
why?

1/2

h = 8

note that this h
value has changed
from previous
page.

Slide 10

The A* Algorithm

• Priority queue PQ begins empty.
• V (= set of previously visited (state,f,backpointer)-triples) begins empty.
• Put S into PQ and V with priority f(s) = g(s) + h(s)
• Is PQ empty?

Yes? Sadly admit there’s no solution
No? Remove node with lowest f(n) from queue. Call it n.
If n is a goal, stop and report success.
“expand” n : For each n' in successors(n)….

• Let f’ = g(n') + h(n') = g(n) + cost(n,n') + h(n')
• If n' not seen before, or n' previously expanded with

f(n')>f’, or n' currently in PQ with f(n')>f’
• Then Place/promote n' on priority queue with priority f’

and update V to include (state=n', f ’, BackPtr=n).
• Else Ignore n'

use sneaky trick
to compute g(n)

= h(s) because
g(start) = 0

Reminder: g(n) is cost of

shortest known path to n
Reminder: h(n) is a heuristic estimate of cost to a goal from n

6

Slide 11

Is A* Guaranteed to Find the
Optimal Path?

A

GS

1
1

h = 6

h = 0

3

Nope. And this example shows why not.

h = 7

Slide 12

Admissible Heuristics

• Write h*(n) = the true minimal cost to goal
from n.

• A heuristic h is admissible if
h(n) <= h*(n) for all states n.

• An admissible heuristic is guaranteed
never to overestimate cost to goal.

• An admissible heuristic is optimistic.

7

Slide 13

8-Puzzle Example

Which of the following are admissible heuristics?

847
362
51

87
654
321Example

State
Goal
State

• h(n) = Number of tiles in wrong
position in state n

• h(n) = 0
• h(n) = Sum of Manhattan

distances between each tile and
its goal location

• h(n) = 1

• h(n) = min (2, h*[n])
• h(n) = h*(n)
• h(n) = max (2, h*[n])

Slide 14

A* with Admissible Heuristic
Guarantees Optimal Path

• Simple proof
• Your lecturer will attempt to give it from

memory.
• He might even get it right. But don’t hold

your breath.

8

Slide 15

Is A* Guaranteed to
Terminate?

• There are finitely many acyclic paths in the search
tree.

• A* only ever considers acyclic paths.
• On each iteration of A* a new acyclic path is

generated because:
– When a node is added the first time, a new path

exists.
– When a node is “promoted”, a new path to that

node exists. It must be new because it’s shorter.
• So the very most work it could do is to look at every

acyclic path in the graph.
• So, it terminates.

i.e. is it
complete?

Slide 16

Comparing Iterative Deepening with A*
From Russell and Norvig, Page 107, Fig 4.8

For 8-puzzle, average number of
states expanded over 100
randomly chosen problems in
which optimal path is length…

732512A* using “Sum of Manhattan
distances” as the heuristic

2273913A* search using “number of
misplaced tiles” as the heuristic

3.6 x 1066,300112Iterative Deepening (see
previous slides)

…12 steps…8 steps…4 steps

9

Slide 17

Comparing Iterative Deepening with A*
From Russell and Norvig, Page 107, Fig 4.8

Average number of states
expanded over 100 randomly
chosen problem in which optimal
path is length…

732512A* using “Sum of Manhattan
distances” as the heuristic

2273913A* search using “number of
misplaced tiles” as the heuristic

3.6 x 1066,300112Iterative Deepening (see
previous slides)

…12 steps…8 steps…4 steps

Andrew’s editorial comments

1. At first sight might look like even “number of misplaced

tiles” is a great heuristic. But probably h(state)=0 would

also do much much better than ID, so the difference is

mainly to do with ID’s big problem of expanding the same

state many times, not the use of a heuristic.

2. Judging solely by “number of states expanded” does not

account for overhead of maintaining hash tables and

priority queue for A*, though it’s pretty clear here that this

won’t dramatically change the results.

Indeed there are
only a couple
hundred thousand
states for the entire
eight puzzle

Slide 18

A* : The Dark Side

• A* can use lots of memory.
In principle:

O(number of states)
• For really big search

spaces, A* will run out of
memory.

10

Slide 19

IDA* : Memory Bounded Search
• Iterative deepening A*. Actually, pretty different from A*. Assume

costs integer.
1. Do loop-avoiding DFS, not expanding any node with

f(n) > 0. Did we find a goal? If so, stop.
2. Do loop-avoiding DFS, not expanding any node with

f(n) > 1. Did we find a goal? If so, stop.
3. Do loop-avoiding DFS, not expanding any node with

f(n) > 2. Did we find a goal? If so, stop.
4. Do loop-avoiding DFS, not expanding any node with

f(n) > 3. Did we find a goal? If so, stop.
…keep doing this, increasing the f(n) threshold by 1 each
time, until we stop.

• This is
Complete
Guaranteed to find optimal
More costly than A* in general.

Slide 20

What You Should Know
• Thoroughly understand A*.
• Be able to trace simple examples of A* execution.
• Understand “admissibility” of heuristics. Proof of

completeness, guaranteed optimality of path.
• Be able to criticize best first search.

References:
Nils Nilsson. Problem Solving Methods in Artificial Intelligence.
McGraw Hill (1971) E&S-BK 501-5353 N71p.
Judea Pearl. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison Wesley (1984) E&S-BK 501-535 P35h.
Chapters 3 & 4 of Stuart Russell and Peter Norvig. Artificial
Intelligence: A Modern Approach.

11

Slide 21

Proof: A* with Admissible Heuristic Guarantees Optimal Path

• Suppose it finds a suboptimal path, ending in goal state G1
where f(G1) > f* where f* = h* (start) = cost of optimal path.

• There must exist a node n which is
Unexpanded
The path from start to n (stored in the BackPointers(n)
values) is the start of a true optimal path

• f(n) >= f(G1) (else search wouldn’t have ended)
• Also f(n) = g(n) + h(n)

= g*(n) + h(n)
<= g*(n) + h*(n)
= f*

So f* >= f(n) >= f(G1)

Why must such a node
exist? Consider any
optimal path
s,n1,n2…goal. If all along
it were expanded, the goal
would’ve been reached
along the shortest path.

By the
admissibility
assumption

because it’s on
optimal path

contradicting
top of slide

Because n is on
the optimal path

Slide 22

Exercise Part 1
In the following maze the successors of a cell include any cell directly to the
east, south, west or north of the current cell except that no transition may pass
through the central barrier. for example successors(m) = { d , n , g }.

gtrqp
nmkhsf
edc

ba

The search problem is to find a path from s to g. We are going to examine the
order in which cells are expanded by various search algorithms. for example,
one possible expansion order that breadth first search might use is:

s h f k p c q a r b t d g

There are other possible orders depending on which of two equal-distance-
from-start states happen to be expanded first. For example s f h p k c q r a t b
g is another possible answer. continued->

12

Slide 23

Exercise Part 1 continued

gtrqp
nmkhsf
edc

ba

Assume you run depth-first-search until it expands the goal node. Assume
that you always try to expand East first, then South, then West, then North.
Assume your version of depth first search avoids loops: it never expands a
state on the current path. What is the order of state expansion?

Slide 24

Exercise Part 2

gtrqp
nmkhsf
edc

ba

Next, you decide to use a Manhattan Distance Metric heuristic function

h(state) = shortest number of steps from state to g if there were no barriers

So, for example, h(k) = 2, h(s) = 4, h(g) = 0

Assume you now use best-first greedy search using heuristic h (a version that
never re-explores the same state twice). Again, give all the states expanded, in
the order they are expanded, until the algorithm expands the goal node.

Finally, assume you use A* search with heuristic h, and run it until it terminates
using the conventional A* termination rule. Again, give all the states expanded,
in the order they are expanded. (Note that depending on the method that A*
uses to break ties, more than one correct answer is possible).

13

Slide 25

Another Example Question
Consider the use of the A* algorithm on a search graph with cycles,
and assume that this graph does not have negative-length edges.
Suppose you are explaining this algorithm to Pat, who is not familiar
with AI. After your elaborated explanation of how A* handles cycles,
Pat is convinced that A* does a lot of unnecessary work to guarantee
that it works properly (i.e. finds the optimal solution) in graphs
containing cycles. Pat suggests the following modification to improve
the efficiency of the algorithm:

Since the graph has cycles, you may detect new cycles from time to time
when expanding a node. For example, if you expand nodes A, B, and C
shown on figure (a) on the next slide, then after expanding C and noticing
that A is also a successor of C, you will detect the cycle A-B-C-A. Every
time you notice a cycle, you may remove the last edge of this cycle from
the search graph. For example, after expanding C, you can remove the
edge C-A (see figure (b) on next slide). Then, if A* visits node C again in
the process of further search, it will not need to traverse this useless edge
the second time. continued next slide

Slide 26

more Another Example Question
Does this modified version of A* always find the optimal path to a
solution? Why or why not?

Start

C

B

A …

…

…

Start

C

B

A …

…

…
(a) Detecting a Cycle (b) Removing the detected cycle

