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8: Polynomial Regression
So far we’ve mainly been dealing with linear regression
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Quadratic Regression
It’s trivial to do linear fits of fixed nonlinear basis functions
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Quadratic Regression
It’s trivial to do linear fits of fixed nonlinear basis functions
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Each component of a z vector is called a term.

Each column of the Z matrix is called a term column

How many terms in a quadratic regression with m
inputs?

•1 constant term

•m linear terms

•(m+1)-choose-2 = m(m+1)/2 quadratic terms

(m+2)-choose-2 terms in total = O(m2)

Note that solving β=(ZTZ)-1(ZTy) is thus O(m6)



3

Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 5

Qth-degree polynomial Regression
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m inputs, degree Q: how many terms?
= the number of unique terms of the form
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= the number of unique terms of the form

= the number of lists of non-negative integers [q0,q1,q2,..qm] 
in which Σqi = Q

= the number of ways of placing Q red disks on a row of 
squares of length Q+m       = (Q+m)-choose-Q

Q=11, m=4

q0=2 q2=0q1=2 q3=4 q4=3



4

Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 7

7: Radial Basis Functions (RBFs)
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1-d RBFs

yest = β1 φ1(x) + β2 φ2(x) + β3 φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1
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Example

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1
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RBFs with Linear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1

All ci ’s are held constant 
(initialized randomly or 

on a grid in m-
dimensional input space)

KW also held constant 
(initialized to be large 

enough that there’s decent 
overlap between basis 

functions*
*Usually much better than the crappy 

overlap on my diagram
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RBFs with Linear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)
then given Q basis functions, define the matrix Z such that Zkj = 
KernelFunction( | xk - ci | / KW) where xk is the kth vector of inputs

And as before, β=(ZT Z)-1(ZTy)

x

y

c1 c1 c1

All ci ’s are held constant 
(initialized randomly or 

on a grid in m-
dimensional input space)

KW also held constant 
(initialized to be large 

enough that there’s decent 
overlap between basis 

functions*
*Usually much better than the crappy 

overlap on my diagram
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the β j’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.

(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the β j’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.

(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)

Answer: Gradient Descent
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the β j’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.

(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)

Answer: Gradient Descent
(But I’d like to see, or hope someone’s already done, a 
hybrid, where the ci ’s and KW are updated with gradient 
descent while the βj’s use matrix inversion)



8

Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 15

Radial Basis Functions in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Two inputs.

Outputs (heights 
sticking out of page) 
not shown.
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Happy RBFs in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors
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Crabby RBFs in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors

What’s the 
problem in this 
example?
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x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors

More crabby RBFs And what’s the 
problem in this 
example?
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Hopeless!

x1

x2

Center

Sphere of 
significant 
influence of 
center

Even before seeing the data, you should 
understand that this is a disaster!
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Unhappy

x1

x2

Center

Sphere of 
significant 
influence of 
center

Even before seeing the data, you should 
understand that this isn’t good either..
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6: Robust Regression

x

y
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Robust Regression

x

y

This is the best fit that 
Quadratic Regression can 
manage
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Robust Regression

x

y

…but this is what we’d 
probably prefer
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.

You are not too 
shabby.
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.

You are not too 
shabby.

But you are 
pathetic.
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)

Then redo the regression 
using weighted datapoints.
I taught you how to do this in the “Instance-
based” lecture (only then the weights 
depended on distance in input-space)

Guess what happens next?
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)

Then redo the regression 
using weighted datapoints.
I taught you how to do this in the “Instance-
based” lecture (only then the weights 
depended on distance in input-space)

Repeat whole thing until 
converged!
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Robust Regression---what we’re 
doing

What regular regression does:

Assume yk was originally generated using the 
following recipe:

yk = β0+ β1 xk+ β2 xk
2 +N(0,σ2)

Computational task is to find the Maximum 
Likelihood β0 , β1 and β2 
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Robust Regression---what we’re 
doing

What LOESS robust regression does:

Assume yk was originally generated using the 
following recipe:

With probability p:
yk = β0+ β1 xk+ β2 xk

2 +N(0,σ2)

But otherwise
yk ~ N(µ,σhuge

2)

Computational task is to find the Maximum 
Likelihood β0 , β1 , β2 , p, µ and σhuge
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Robust Regression---what we’re 
doing

What LOESS robust regression does:

Assume yk was originally generated using the 
following recipe:

With probability p:
yk = β0+ β1 xk+ β2 xk

2 +N(0,σ2)

But otherwise
yk ~ N(µ,σhuge

2)

Computational task is to find the Maximum 
Likelihood β0 , β1 , β2 , p, µ and σhuge

Mysteriously, the 
reweighting procedure 
does this computation 
for us.

Your first glimpse of 
two spectacular letters: 

E.M.
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5: Regression Trees
• “Decision trees for regression”

Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 34

A regression tree leaf

Predict age = 47

Mean age of records 
matching this leaf node
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A one-split regression tree

Predict age = 36Predict age = 39

Gender?

Female Male
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Choosing the attribute to split on

• We can’t use 
information gain.

• What should we use?

725+0YesMale

:::::

2400NoMale

3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender



19

Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 37

Choosing the attribute to split on

MSE(Y|X) = The expected squared error if we must predict a record’s Y 
value given only knowledge of the record’s X value

If we’re told x=j, the smallest expected error comes from predicting the 
mean of the Y-values among those records in which x=j. Call this mean 
quantity µy

x=j

Then…

725+0YesMale

:::::

2400NoMale

3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender

∑ ∑
= =

=−=
X

k

N

j jxk

jx
yk µy

R
XYMSE

1 )such that  (

2)(
1

)|(
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Choosing the attribute to split on

MSE(Y|X) = The expected squared error if we must predict a record’s Y 
value given only knowledge of the record’s X value

If we’re told x=j, the smallest expected error comes from predicting the 
mean of the Y-values among those records in which x=j. Call this mean 
quantity µy

x=j

Then…

725+0YesMale

:::::

2400NoMale

3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender

∑ ∑
= =

=−=
X

k

N

j jxk

jx
yk µy

R
XYMSE

1 )such that  (

2)(
1

)|(

Regression tree attribute selection: greedily 
choose the attribute that minimizes MSE(Y|X) 

Guess what we do about real-valued inputs?

Guess how we prevent overfitting
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Pruning Decision

Predict age = 36Predict age = 39

Gender?

Female Male

…property-owner = Yes

# property-owning females = 56712
Mean age among POFs = 39
Age std dev among POFs = 12

# property-owning males = 55800
Mean age among POMs = 36
Age std dev among POMs = 11.5

Use a standard Chi-squared test of the null-
hypothesis “these two populations have the same 
mean” and Bob’s your uncle.

Do I deserve 
to live?
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Linear Regression Trees

Predict age = 

26 + 6 * NumChildren -
2 * YearsEducation

Gender?

Female Male

…property-owner = Yes

Leaves contain linear 
functions (trained using 
linear regression on all 
records matching that leaf)

Predict age = 

24 + 7 * NumChildren -
2.5 * YearsEducation

Also known as 
“Model Trees”

Split attribute chosen to minimize 
MSE of regressed children.

Pruning with a different Chi-
squared
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Linear Regression Trees

Predict age = 

26 + 6 * NumChildren -
2 * YearsEducation

Gender?

Female Male

…property-owner = Yes

Leaves contain linear 
functions (trained using 
linear regression on all 
records matching that leaf)

Predict age = 

24 + 7 * NumChildren -
2.5 * YearsEducation

Also known as 
“Model Trees”

Split attribute chosen to minimize 
MSE of regressed children.

Pruning with a different Chi-
squared
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Test your understanding

x

y

Assuming regular regression trees, can you sketch a 
graph of the fitted function yest(x) over this diagram?
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Test your understanding

x

y

Assuming linear regression trees, can you sketch a graph 
of the fitted function yest(x) over this diagram?
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4: GMDH (c.f. BACON, AIM)
• Group Method Data Handling
• A very simple but very good idea:
1. Do linear regression
2. Use cross-validation to discover whether any 

quadratic term is good. If so, add it as a basis 
function and loop.

3. Use cross-validation to discover whether any of a 
set of familiar functions (log, exp, sin etc) 
applied to any previous basis function helps. If 
so, add it as a basis function and loop.

4. Else stop
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GMDH (c.f. BACON, AIM)
• Group Method Data Handling
• A very simple but very good idea:
1. Do linear regression
2. Use cross-validation to discover whether any 

quadratic term is good. If so, add it as a basis 
function and loop.

3. Use cross-validation to discover whether any of a 
set of familiar functions (log, exp, sin etc) 
applied to any previous basis function helps. If 
so, add it as a basis function and loop.

4. Else stop

Typical learned function:

ageest = height - 3.1 sqrt(weight) + 

4.3 income / (cos (NumCars))
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3: Cascade Correlation
• A super-fast form of Neural Network learning
• Begins with 0 hidden units
• Incrementally adds hidden units, one by one, 

doing ingeniously little recomputation between 
each unit addition
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Cascade beginning

y2x(m)
2…x(1)

2x(0)
2

:::::

y1x(m)
1…x(1)

1x(0)
1

YX(m)…X(1)X(0)

Begin with a regular dataset

Nonstandard notation:
•X(i) is the i’th attribute 
•x(i)

k is the value of the i’th 
attribute in the k’th record

Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 48

Cascade first step

y2x(m)
2…x(1)

2x(0)
2

:::::

y1x(m)
1…x(1)

1x(0)
1

YX(m)…X(1)X(0)

Begin with a regular dataset

Find weights w(0)
i  to best fit Y. 

I.E. to minimize

∑∑
==

=−
m

j

j
kjk

R

k
kk xwyyy

1

)()0()0(

1

2)0(   where)(
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Consider our errors…

:

y2

y1

Y

:

y(0)
2

y(0)
1

Y(0)

:

e(0)
2

e(0)
1

E(0)

x(m)
2…x(1)

2x(0)
2

::::

x(m)
1…x(1)

1x(0)
1

X(m)…X(1)X(0)

Begin with a regular dataset

Find weights w(0)
i  to best fit Y. 

I.E. to minimize

∑∑
==

=−
m

j

j
kjk

R

k
kk xwyyy

1

)()0()0(

1

2)0(   where)(

)0()0( Define kkk yye −=
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Create a hidden unit…

:

e(0)
2

e(0)
1

E(0)

:

y2

y1

Y

:

y(0)
2

y(0)
1

Y(0)

:

h(0)
2

h(0)
1

H(0)

x(m)
2…x(1)

2x(0)
2

::::

x(m)
1…x(1)

1x(0)
1

X(m)…X(1)X(0)

Find weights u(0)
i  to define a new basis 

function H(0)(x) of the inputs.

Make it specialize in predicting the 
errors in our original fit:

Find {u(0)
i } to maximize correlation 

between H(0)(x) and E(0) where 







= ∑

=

m

j

j
j xugH

1

)()0()0( )(x
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Cascade next step
Find weights w(1)

i p(1)
0 to better fit Y. 

I.E. to minimize

)0()0(

1

)()0()1(

1

2)1(   where)( kj

m

j

j
kjk

R

k
kk hpxwyyy +=− ∑∑

==

:

h(0)
2

h(0)
1

H(0)

:

y(1)
2

y(1)
1

Y(1)

:

e(0)
2

e(0)
1

E(0)

:

y2

y1

Y

:

y(0)
2

y(0)
1

Y(0)

x(m)
2…x(1)

2x(0)
2

::::

x(m)
1…x(1)

1x(0)
1

X(m)…X(1)X(0)
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Now look at new errors
Find weights w(1)

i p(1)
0 to better fit Y. 

:

y(1)
2

y(1)
1

Y(1)

:

e(1)
2

e(1)
1

E(1)

:

h(0)
2

h(0)
1

H(0)

:

e(0)
2

e(0)
1

E(0)

:

y2

y1

Y

:

y(0)
2

y(0)
1

Y(0)

x(m)
2…x(1)

2x(0)
2

::::

x(m)
1…x(1)

1x(0)
1

X(m)…X(1)X(0)

)1()1( Define kkk yye −=
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Create next hidden unit…
Find weights u(1)

i v(1)
0 to define a new 

basis function H(1)(x) of the inputs.

Make it specialize in predicting the 
errors in our original fit:

Find {u(1)
i , v(1)

0} to maximize correlation 
between H(1)(x) and E(1) where









+= ∑

=

)0()1(
0

1

)()1()1( )( hvxugH
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j

j
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:
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:
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1
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:

h(0)
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h(0)
1

H(0)
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e(0)
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e(0)
1

E(0)
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y2

y1

Y

:

y(0)
2

y(0)
1

Y(0)

x(m)
2…x(1)

2x(0)
2

::::

x(m)
1…x(1)

1x(0)
1

X(m)…X(1)X(0)
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Cascade n’th step
Find weights w(n)

i p(n)
j to better fit Y. 

I.E. to minimize

∑∑∑
−

===

+=−
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1x(0)
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X(m)…X(1)X(0)
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Now look at new errors
Find weights w(n)

i p(n)
j to better fit Y. 

I.E. to minimize

)()( Define n
kk

n
k yye −=

:
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2
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…
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1
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1
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:

e(0)
2
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:
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y1

Y

:
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1

Y(0)
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2x(0)
2
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x(m)
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1x(0)
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X(m)…X(1)X(0)
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Create n’th hidden unit…
Find weights u(n)

i v(n)
i to define a new basis function H(n)(x) of 

the inputs.

Make it specialize in predicting the errors in our previous fit:

Find {u(n)
i , v(n)

j} to maximize correlation between H(n)(x) and 
E(n) where







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Continue until satisfied with fit…
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Visualizing first iteration
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Visualizing second iteration
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Visualizing third iteration
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Example: Cascade Correlation for 
Classification
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Training two spirals: Steps 1-6
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Training two spirals: Steps 2-12
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If you like Cascade Correlation…
See Also
• Projection Pursuit

In which you add together many non-linear non-
parametric scalar functions of carefully chosen directions

Each direction is chosen to maximize error-reduction from 
the best scalar function

• ADA-Boost
An additive combination of regression trees in which the 

n+1’th tree learns the error of the n’th tree
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2: Multilinear Interpolation

x

y

Consider this dataset. Suppose we wanted to create a 
continuous and piecewise linear fit to the data
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Multilinear Interpolation

x

y

Create a set of knot points: selected X-coordinates 
(usually equally spaced) that cover the data

q1 q4q3 q5q2
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Multilinear Interpolation

x

y

We are going to assume the data was generated by a 
noisy version of a function that can only bend at the 
knots. Here are 3 examples (none fits the data well)

q1 q4q3 q5q2



34

Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 67

How to find the best fit?
Idea 1: Simply perform a separate regression in each 
segment for each part of the curve

What’s the problem with this idea?

x

y

q1 q4q3 q5q2
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How to find the best fit?

x

y

Let’s look at what goes on in the red segment

q1 q4q3 q5q2

h2

h3

233
2

2
3   where

)()(
)( qqwh

w
xq

h
w

xq
xy est −=

−
+

−
=
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xfhxfhxy est +=

w
xq

xf
w

qx
xf

−
−=

−
−= 3

3
2

2 1)(,1)( where

φ2(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xfhxfhxy est +=

w
xq

xf
w

qx
xf

−
−=

−
−= 3

3
2

2 1)(,1)( where

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xfhxfhxy est +=

w
qx

xf
w

qx
xf

||
1)(,

||
1)( where 3

3
2

2
−

−=
−

−=

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xfhxfhxy est +=

w
qx

xf
w

qx
xf

||
1)(,

||
1)( where 3

3
2

2
−

−=
−

−=

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In general

q1 q4q3 q5q2

h2

h3

∑
=

=
KN

i
ii

est xfhxy
1

)()(





 <−−−=

otherwise0

 || if||1)( where wqx
w

qx
xf i

i

i

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In general

q1 q4q3 q5q2

h2

h3

∑
=

=
KN

i
ii

est xfhxy
1

)()(





 <−−−=

otherwise0

 || if||1)( where wqx
w

qx
xf i

i

i

φ2(x)

φ3(x)

And this is simply a basis function 
regression problem!

We know how to find the least 
squares hiis!
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3

To predict the 
value here…
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3

To predict the 
value here…

First interpolate 
its value on two 
opposite edges… 7.33

7
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
To predict the 
value here…
First interpolate 
its value on two 
opposite edges…
Then interpolate 
between those 
two values

7.33

7

7.05
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
To predict the 
value here…
First interpolate 
its value on two 
opposite edges…
Then interpolate 
between those 
two values

7.33

7

7.05

Notes:

This can easily be generalized 
to m dimensions.

It should be easy to see that it 
ensures continuity

The patches are not linear
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Doing the regression

x1

x2

Given data, how 
do we find the 
optimal knot 
heights?

Happily, it’s 
simply a two-
dimensional 
basis function 
problem.

(Working out 
the basis 
functions is 
tedious, 
unilluminating, 
and easy)

What’s the 
problem in 
higher 
dimensions?

9

7 8

3
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1: MARS
• Multivariate Adaptive Regression Splines
• Invented by Jerry Friedman (one of 

Andrew’s heroes)
• Simplest version:

Let’s assume the function we are learning is of the 
following form:

∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs
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MARS ∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs

x

y

q1 q4q3 q5q2

Idea: Each 
gk is one of 

these
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MARS ∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs

x

y

q1 q4q3 q5q2

∑∑
= =

=
m

k
k

N

j

k
j

k
j

est xfhy
K

1 1

)()(x







<−
−

−=
otherwise0

 || if
||

1)( where k
k
jk

k

k
jk

k
j

wqx
w

qx
xf

qk
j : The location of 

the j’th knot in the 
k’th dimension
hk

j : The regressed 
height of the j’th
knot in the k’th
dimension
wk: The spacing 
between knots in 
the kth dimension
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That’s not complicated enough!
• Okay, now let’s get serious. We’ll allow 

arbitrary “two-way interactions”:

∑ ∑∑
= +==

+=
m

k

m

kt
tkkt

m

k
kk

est xxgxgy
1 11

),()()(x

The function we’re 
learning is allowed to be 

a sum of non-linear 
functions over all one-d 

and 2-d subsets of 
attributes

Can still be expressed as a linear 
combination of basis functions

Thus learnable by linear regression

Full MARS: Uses cross-validation to 
choose a subset of subspaces, knot 
resolution and other parameters.
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If you like MARS…
…See also CMAC (Cerebellar Model Articulated 

Controller) by James Albus (another of 
Andrew’s heroes)
• Many of the same gut-level intuitions
• But entirely in a neural-network, biologically 

plausible way
• (All the low dimensional functions are by 

means of lookup tables, trained with a delta-
rule and using a clever blurred update and 
hash-tables)
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Where are we now?

In
pu

ts

Classifier
Predict

category

In
pu

ts Density
Estimator

Prob-
ability

In
pu

ts

Regressor
Predict
real no.

Dec Tree, Sigmoid Perceptron, Sigmoid N.Net, 
Gauss/Joint BC, Gauss Naïve BC, N.Neigh, Bayes 
Net Based BC, Cascade Correlation

Joint DE, Naïve DE, Gauss/Joint DE, Gauss Naïve 
DE, Bayes Net Structure Learning

Linear Regression, Polynomial Regression, 
Perceptron, Neural Net, N.Neigh, Kernel, LWR, 
RBFs, Robust Regression, Cascade Correlation, 
Regression Trees, GMDH, Multilinear Interp, MARS

In
pu

ts Inference
Engine Learn

P(E1|E2)
Joint DE, Bayes Net Structure Learning
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What You Should Know
• For each of the eight methods you should be able 

to summarize briefly what they do and outline 
how they work.

• You should understand them well enough that 
given access to the notes you can quickly re-
understand them at a moments notice

• But you don’t have to memorize all the details
• In the right context any one of these eight might 

end up being really useful to you one day! You 
should be able to recognize this when it occurs.
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