

8: Polynomial Regression

So far we've mainly been dealing with linear regression

Quadratic Regression

It's trivial to do linear fits of fixed nonlinear basis functions

Quadratic Rearession

Qth-degree polynomial Regression

m inputs, degree Q: how many terms?

$=$ the number of unique terms of the form

$$
x_{1}^{q_{1}} x_{2}^{q_{2}} \ldots x_{m}^{q_{m}} \text { where } \sum_{i=1} q_{i} \leq Q
$$

$=$ the number of unique terms of the form

$$
1^{q_{0}} x_{1}^{q_{1}} x_{2}^{q_{2}} \ldots x_{m}^{q_{m}} \text { where } \sum_{i=0} q_{i}=Q
$$

$=$ the number of lists of non-negative ${ }^{i=0}$ integers $\left[q_{0}, q_{1}, q_{2}, . . q_{m}\right]$ in which $\Sigma q_{i}=$ Q
= the number of ways of placing Q red disks on a row of squares of length $\mathrm{Q}+\mathrm{m}=(\mathrm{Q}+\mathrm{m})$-choose- Q

$$
q_{0}=2 \quad q_{1}=2 \quad q_{2}=0 \quad q_{3}=4 \quad q_{4}=3
$$

Radial Basis Functions in 2-d

LOESS-based Robust Regression

LOESS-based Robust Regression

 . After the initial fit, score each datapoint according to how well it's fitted...

LOESS-based Robust Regression - After the initial fit, score

Robust Regression---what we're doing

What regular regression does:

Assume y_{k} was originally generated using the following recipe:

$$
y_{k}=\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}+N\left(0, \sigma^{2}\right)
$$

Computational task is to find the Maximum Likelihood β_{0}, β_{1} and β_{2}

Robust Regression---what we're doing

What LOESS robust regression does:

Assume y_{k} was originally generated using the following recipe:

With probability p :

$$
y_{k}=\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}+N\left(0, \sigma^{2}\right)
$$

But otherwise

$$
y_{k} \sim N\left(\mu, \sigma_{\text {huge }}{ }^{2}\right)
$$

Computational task is to find the Maximum Likelihood $\beta_{0}, \beta_{1}, \beta_{2}, p, \mu$ and $\sigma_{\text {huge }}$

Robust Regression---what we're doing

What LOESS robust regression does:
Assume y_{k} was originally generated using th Mysteriously, the following recipe:

With probability p :

$$
y_{k}=\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}+N\left(0, \sigma^{2}\right)
$$

But otherwise

$$
y_{k} \sim N\left(\mu, \sigma_{\text {huge }}{ }^{2}\right)
$$

Computational task is to find the Maximum Likelihood $\beta_{0}, \beta_{1}, \beta_{2}, p, \mu$ and $\sigma_{\text {huge }}$

5: Regression Trees
 - "Decision trees for regression"

A regression tree leaf

A one-split regression tree

Choosing the attribute to split on

- We can't use information gain.
- What should we use?

Choosing the attribute to split on

Gender	Rich?	Num. Children	Num. Beany Babies	Age
Female	No	2	1	38
Male	No	0	0	24
Male	Yes	0	$5+$	72
$:$	$:$	$:$	$:$	$:$

$\operatorname{MSE}(\mathrm{Y} \mid \mathrm{X})=$ The expected squared error if we must predict a record's Y value given only knowledge of the record's X value
If we're told $x=j$, the smallest expected error comes from predicting the mean of the Y-values among those records in which $x=j$. Call this mean quantity $\mu_{y}{ }^{x=j}$
Then...

$$
\operatorname{MSE}(Y \mid X)=\frac{1}{R} \sum_{j=1}^{N_{X}} \sum_{\left(k \text { such that } t_{k}=j\right)}\left(y_{k}-\mu_{y}^{x=j}\right)^{2}
$$

Choosing the attribute to split on

Gender	Rich?	Num.	Num. Beany	Age	
Female	Regression tree attribute selection: greedily choose the attribute that minimizes MSE(Y\|X) Guess what we do about real-valued inputs? Guess how we prevent overfitting				
Male					
Male					

$\operatorname{MSE}(\mathrm{Y} \mid \mathrm{X})=$ The expected squared error if we must predict a record's Y value given only knowledge of the record's X value
If we're told $x=j$, the smallest expected error comes from predicting the mean of the Y-values among those records in which $\mathrm{x}=\mathrm{j}$. Call this mean quantity $\mu_{y}{ }^{x}=j$
Then...

$$
\operatorname{MSE}(Y \mid X)=\frac{1}{R} \sum_{j=1}^{N_{X}} \sum_{(k \text { such thatix }}\left(y_{k}-\mu_{y}^{x=j}\right)^{2}
$$

Pruning Decision

$=56712$
Mean age among POFs = 39
Age std dev among POFs = 12
Mean age among POMs $=36$
Age std dev among POMs $=11.5$
Use a standard Chi-squared test of the nullhypothesis "these two populations have the same mean" and Bob's your uncle.

Linear RegressionTrees

Also known as "Model Trees"

Test your understanding

Assuming regular regression trees, can you sketch a graph of the fitted function $y^{e s t}(x)$ over this diagram?

Test your understanding

Assuming linear regression trees, can you sketch a graph of the fitted function $y^{\text {est }}(x)$ over this diagram?

4: GMDH (c.f. BACON, AIM)

- Group Method Data Handling
- A very simple but very good idea:

1. Do linear regression
2. Use cross-validation to discover whether any quadratic term is good. If so, add it as a basis function and loop.
3. Use cross-validation to discover whether any of a set of familiar functions (log, exp, sin etc) applied to any previous basis function helps. If so, add it as a basis function and loop.
4. Else stop

GMDH (c.f. BACON, AIM)

- Group Method Data Handling
- A very simple but very good idea:

1. D Typical learned function:
2. Usagest $=$ height -3.1 sqrt(weight) + q4 $\quad 4.3$ income / (cos (NumCars)) Sis function and loop.
3. Use cross-validation to discover whether any of a set of familiar functions (log, exp, sin etc) applied to any previous basis function helps. If so, add it as a basis function and loop.
4. Else stop

3: Cascade Correlation

- A super-fast form of Neural Network learning
- Begins with 0 hidden units
- Incrementally adds hidden units, one by one, doing ingeniously little recomputation between each unit addition

Cascade beginning

Begin with a regular dataset

Nonstandard notation:
$-\times(i)$ is the i^{\prime} 'th attribute
$x^{(i)}$ is the value of the i 'th
attribute in the k'th record

Cascade first step

Begin with a regular dataset
Find weights $w^{(0)}$; to best fit Y.
I.E. to minimize

$$
\sum_{k=1}^{R}\left(y_{k}-y_{k}^{(0)}\right)^{2} \text { where } y_{k}^{(0)}=\sum_{j=1}^{m} w_{j}^{(0)} x_{k}^{(j)}
$$

$X^{(0)}$	$X^{(1)}$		$X^{(m)}$	Y
$X^{(0)}{ }_{1}$	$X^{(1)}{ }_{1}$		$X^{(m)}{ }_{1}$	y_{1}
$X^{(0)}{ }_{2}$	$X^{(1)}{ }_{2}$		$X^{(m)}{ }_{2}$	y_{2}
		\ldots		.

Consider our errors...

Begin with a regular dataset
Find weights $w^{(0)}$, to best fit Y.
I.E. to minimize

$$
\sum_{k=1}^{R}\left(y_{k}-y_{k}^{(0)}\right)^{2} \text { where } y_{k}^{(0)}=\sum_{j=1}^{m} w_{j}^{(0)} x_{k}^{(j)}
$$

Define $e_{k}^{(0)}=y_{k}-y_{k}^{(0)}$

$X^{(0)}$	$X^{(1)}$	\ldots	$X^{(m)}$	Y	$Y^{(0)}$	$E^{(0)}$
$\mathrm{X}^{(0)}{ }_{1}$	$\mathrm{X}^{(1)}{ }_{1}$	\ldots	$\mathrm{X}^{(\mathrm{m})_{1}}$	y_{1}	$\mathrm{y}^{(0)}{ }_{1}$	$\mathrm{e}^{(0)}{ }_{1}$
$\mathrm{X}^{(0)}{ }_{2}$	$\mathrm{X}^{(1)}{ }_{2}$	\ldots	$\mathrm{X}^{(\mathrm{m})_{2}}$	y_{2}	$\mathrm{y}^{(0)}{ }_{2}$	$\mathrm{e}^{(0)}{ }_{2}$
$:$	$:$	$:$	$:$	$:$	$:$	$:$

Create a hidden unit...

Find weights $u^{(0)}$; to define a new basis function $\mathrm{H}^{(0)}(\mathrm{x})$ of the inputs.
Make it specialize in predicting the errors in our original fit:
Find $\left\{u^{(0)}{ }_{i}\right\}$ to maximize correlation between $\mathrm{H}^{(0)}(\mathrm{x})$ and $\mathrm{E}^{(0)}$ where

$$
H^{(0)}(\mathbf{x})=g\left(\sum_{j=1}^{m} u_{j}^{(0)} x^{(j)}\right)
$$

$X^{(0)}$	$X^{(1)}$	\ldots	$X^{(m)}$	Y	$Y^{(0)}$	$E^{(0)}$	$H^{(0)}$
$X^{(0)}{ }_{1}$	$X^{(1)}{ }_{1}$	\ldots	$X^{(m)}{ }_{1}$	y_{1}	$y^{(0)}{ }_{1}$	$e^{(0)}{ }_{1}$	$h^{(0)}{ }_{1}$
$X^{(0)}{ }_{2}$	$X^{(1)}{ }_{2}$	\ldots	$X^{(m)}{ }_{2}$	y_{2}	$y^{(0)}{ }_{2}$	$e^{(0)}{ }_{2}$	$h^{(0)}{ }_{2}$
	

Cascade next step

Find weights $w^{(1)} p^{(1)}$ o to better fit Y.
I.E. to minimize

$$
\sum_{k=1}^{R}\left(y_{k}-y_{k}^{(1)}\right)^{2} \text { where } y_{k}^{(1)}=\sum_{j=1}^{m} w_{j}^{(0)} x_{k}^{(j)}+p_{j}^{(0)} h_{k}^{(0)}
$$

$\chi^{(0)}$	$\mathrm{X}^{(1)}$		$X^{(m)}$	Y	$\mathrm{Y}(0)$	$E^{(0)}$	$\mathrm{H}^{(0)}$	$Y^{(1)}$
$\mathrm{x}^{(0)}{ }_{1}$	$\mathrm{x}^{(1)_{1}}$	\ldots	$x^{(m)}{ }_{1}$	y_{1}	$\mathrm{y}^{(0)}{ }_{1}$	$\mathrm{e}^{(0)_{1}}$	$\mathrm{h}^{(0)}{ }_{1}$	$\mathrm{y}^{(1)}{ }_{1}$
$\mathrm{x}^{(0)}{ }_{2}$	$\mathrm{x}^{(1)}{ }_{2}$	\ldots	$x^{(m)} 2$	y_{2}	$\mathrm{y}^{(0)}{ }_{2}$	$\mathrm{e}^{(0)}{ }_{2}$	$\mathrm{h}^{(0)}{ }_{2}$	$\mathrm{y}^{(1)}{ }_{2}$
	.	:	:	:			:	:

Now look at new errors

Find weights $w^{(1)} p^{(1)}{ }_{0}$ to better fit Y.

Define $e_{k}^{(1)}=y_{k}-y_{k}^{(1)}$									
$X^{(0)}$	$X^{(1)}$		$X^{(m)}$	Y	$Y(0)$	$E^{(0)}$	$H^{(0)}$	$Y^{(1)}$	$\mathrm{E}^{(1)}$
$\mathrm{x}^{(0)}{ }_{1}$	$\mathrm{x}^{(1)}{ }_{1}$		$\mathrm{x}^{(m)}{ }_{1}$	y_{1}	$\mathrm{y}^{(0)}{ }_{1}$	$\mathrm{e}^{(0)}{ }_{1}$	$h^{(0)}$	$\mathrm{y}^{(1)}{ }_{1}$	$\mathrm{e}^{(1)}{ }_{1}$
$\mathrm{x}^{(0)}{ }_{2}$	$\mathrm{x}^{(1)}{ }_{2}$		$x^{(m)}{ }_{2}$	y_{2}	$\mathrm{y}^{(0)} 2$	$\mathrm{e}^{(0)} 2$	$h^{(0)} 2$	$\mathrm{y}^{(1)} 2$	$\mathrm{e}^{(1)} 2$
.		

Create next hidden unit...

Find weights $u^{(1)}{ }_{i} v^{(1)}{ }_{0}$ to define a new basis function $\mathrm{H}^{(1)}(\mathrm{x})$ of the inputs.

Make it specialize in predicting the errors in our original fit:

Find $\left\{\mathrm{u}^{(1)}{ }_{\mathrm{i}}, \mathrm{v}^{(1)}{ }_{0}\right\}$ to maximize correlation

								$\sum_{j=1} u_{j}^{\prime}$		${ }_{0}^{(1)} h^{(0)}$
$X^{(0)}$	$\mathrm{X}^{(1)}$,	X(m)	Y	Y(0)	$E^{(0)}$	$\mathrm{H}^{(0)}$	$Y^{(1)}$	$\mathrm{E}^{(1)}$	$\mathrm{H}^{(1)}$
$\mathrm{x}^{(0)}{ }_{1}$	$\mathrm{x}^{(1)}{ }_{1}$	\ldots	$x^{(m)}{ }_{1}$	y_{1}	$\mathrm{y}^{(0)}{ }_{1}$	$\mathrm{e}^{(0)}{ }_{1}$	$\mathrm{h}^{(0)}{ }_{1}$	$\mathrm{y}^{(1))_{1}}$	$\mathrm{e}^{(1))_{1}}$	$\mathrm{h}^{(1)_{1}}$
$\mathrm{x}^{(0)}{ }_{2}$	$\mathrm{x}^{(1)} 2$	\ldots	$x^{(m)} 2$	y_{2}	$\mathrm{y}^{(0)}{ }_{2}$	$\mathrm{e}^{(0)}{ }_{2}$	$\mathrm{h}^{(0)}{ }_{2}$	$y^{(1)}{ }_{2}$	$\mathrm{e}^{(1)_{2}}$	$\mathrm{h}^{(1)} 2$
		:	:	:	:	:		:	:	.

Cascade n'th step

Find weights $w^{(n)} p^{(n)}$ j to better fit Y.
I.E. to minimize

$$
\sum_{k=1}^{R}\left(y_{k}-y_{k}^{(n)}\right)^{2} \text { where } y_{k}^{(n)}=\sum_{j=1}^{m} w_{j}^{(n)} x_{k}^{(j)}+\sum_{j=1}^{n-1} p_{j}^{(n)} h_{k}^{(j)}
$$

Now look at new errors

Find weights $w^{(n)} p^{(n)}$ to better fit Y.
I.E. to minimize

Define $e_{k}^{(n)}=y_{k}-y_{k}^{(n)}$

$\mathrm{X}^{(0)}$	$\mathrm{X}^{(1)}$	\ldots	$\mathrm{X}^{(\mathrm{m})}$	Y	$\mathrm{Y}^{(0)}$	$\mathrm{E}^{(0)}$	$\mathrm{H}^{(0)}$	$\mathrm{Y}(1)$	$\mathrm{E}^{(1)}$	$\mathrm{H}^{(1)}$	\ldots	$\mathrm{Y}(\mathrm{n})$	$\mathrm{E}^{(\mathrm{n})}$
$\mathrm{X}^{(0)}{ }_{1}$	$\mathrm{X}^{(1)}{ }_{1}$	\ldots	$\mathrm{X}^{(\mathrm{m})}{ }_{1}$	y_{1}	$\mathrm{y}^{(0)}{ }_{1}$	$\mathrm{e}^{(0)}{ }_{1}$	$\mathrm{~h}^{(0)}{ }_{1}$	$\mathrm{y}^{(1)}{ }_{1}$	$\mathrm{e}^{(1)}{ }_{1}$	$\mathrm{~h}^{(1)}{ }_{1}$	\ldots	$\mathrm{y}^{(\mathrm{n})}{ }_{1}$	$\mathrm{e}^{(\mathrm{n})}{ }_{1}$
$\mathrm{X}^{(0)}{ }_{2}$	$\mathrm{X}^{(1)}{ }_{2}$	\ldots	$\mathrm{X}^{(\mathrm{m})}{ }_{2}$	y_{2}	$\mathrm{y}^{(0)}{ }_{2}$	$\mathrm{e}^{(0)}{ }_{2}$	$\mathrm{~h}^{(0)}{ }_{2}$	$\mathrm{y}^{(1)}{ }_{2}$	$\mathrm{e}^{(1)}{ }_{2}$	$\mathrm{~h}^{(1)}{ }_{2}$	\ldots	$\mathrm{y}^{(\mathrm{n})}{ }_{2}$	$\mathrm{e}^{(\mathrm{n})}{ }_{2}$
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	\vdots	$:$	$:$	$:$

Create n'th hidden unit...

Find weights $u^{(n)}{ }_{i} v^{(n)}$ to define a new basis function $H^{(n)}(x)$ of the inputs.
Make it specialize in predicting the errors in our previous fit:
Find $\left\{u^{(n)}, v^{(n)}\right\}$ to maximize correlation between $H^{(n)}(x)$ and $E^{(n)}$ where

$$
H^{(n)}(\mathbf{x})=g\left(\sum_{j=1}^{m} u_{j}^{(n)} x^{(j)}+\sum_{j=1}^{n-1} v_{j}^{(n)} h^{(j)}\right)
$$

Continue until satisfied with fit...

Example: Cascade Correlation for Classification

Copyright © 2001, Andrew W. Moore

Machine Learning Favorites: Slide 60

Training two spirals: Steps 2-12

If you like Cascade Correlation...

See Also

- Projection Pursuit

In which you add together many non-linear nonparametric scalar functions of carefully chosen directions Each direction is chosen to maximize error-reduction from the best scalar function

- ADA-Boost

An additive combination of regression trees in which the $n+1$ 'th tree learns the error of the n'th tree

2: Multilinear Interpolation

Consider this dataset. Suppose we wanted to create a continuous and piecewise linear fit to the data

Multilinear Interpolation

Create a set of knot points: selected X-coordinates (usually equally spaced) that cover the data

Multilinear Interpolation

We are going to assume the data was generated by a noisy version of a function that can only bend at the knots. Here are 3 examples (none fits the data well)

How to find the best fit?

Idea 1: Simply perform a separate regression in each segment for each part of the curve

How to find the best fit?

Let's look at what goes on in the red segment

$$
y^{e s t}(x)=\frac{\left(q_{3}-x\right)}{w} h_{2}+\frac{\left(q_{2}-x\right)}{w} h_{3} \text { where } w=q_{3}-q_{2}
$$

1: MARS

- Multivariate Adaptive Regression Splines

- Invented by Jerry Friedman (one of Andrew's heroes)

- Simplest version:

Let's assume the function we are learning is of the following form:

$$
y^{e s t}(\mathbf{x})=\sum_{k=1}^{m} g_{k}\left(x_{k}\right)
$$

Instead of a linear combination of the inputs, it's a linear combination of non-linear functions of individual inputs

That's not complicated enough!

- Okay, now let's get serious. We'll allow arbitrary "two-way interactions":

$$
y^{e s t}(\mathbf{x})=\sum_{k=1}^{m} g_{k}\left(x_{k}\right)+\sum_{k=1}^{m} \sum_{t=k+1}^{m} g_{k t}\left(x_{k}, x_{t}\right)
$$

The function we're learning is allowed to be a sum of non-linear functions over all one-d and $2-d$ subsets of attributes

Can still be expressed as a linear combination of basis functions Thus learnable by linear regression Full MARS: Uses cross-validation to choose a subset of subspaces, knot resolution and other parameters.

If you like MARS...
 .See also CMAC (Cerebellar Model Articulated Controller) by James Albus (another of Andrew's heroes)

- Many of the same gut-level intuitions
- But entirely in a neural-network, biologically plausible way
- (All the low dimensional functions are by means of lookup tables, trained with a deltarule and using a clever blurred update and hash-tables)

What You Should Know

- For each of the eight methods you should be able to summarize briefly what they do and outline how they work.
- You should understand them well enough that given access to the notes you can quickly reunderstand them at a moments notice
- But you don't have to memorize all the details
- In the right context any one of these eight might end up being really useful to you one day! You should be able to recognize this when it occurs.

Citations

Radial Basis Functions
T. Poggio and F. Girosi, Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks, Science, 247, 978--982, 1989
LOESS
W. S. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, 74, 368, 829-836, December, 1979
GMDH etc
http://www.inf.kiev.ua/GMDH-home/
P. Langley and G. L. Bradshaw and H. A. Simon, Rediscovering Chemistry with the BACON System, Machine Learning: An Artificial Intelligence Approach, R. S. Michalski and J. G. Carbonnell and T. M. Mitchell, Morgan Kaufmann, 1983

Regression Trees etc
L. Breiman and J. H. Friedman and R. A. Olshen and C. J. Stone, Classification and Regression Trees, Wadsworth, 1984
J. R. Quinlan, Combining Instance-Based and Model-Based Learning, Machine Learning: Proceedings of the Tenth International Conference, 1993
Cascade Correlation etc
S. E. Fahlman and C. Lebiere. The cascadecorrelation learning architecture. Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1990. http://citeseer.nj.nec.com/fahlman91cascadec orrelation.html
J. H. Friedman and W. Stuetzle, Projection Pursuit Regression, Journal of the American Statistical Association, 76, 376, December, 1981
MARS
J. H. Friedman, Multivariate Adaptive Regression Splines, Department for Statistics, Stanford University, 1988, Technical Report No. 102

