

Robust Regression---what we're doing

What regular regression does:

Assume y_k was originally generated using the following recipe:

$$y_k = b_0 + b_1 x_k + b_2 x_k^2 + N(0, s^2)$$

Computational task is to find the Maximum Likelihood \boldsymbol{b}_0 , \boldsymbol{b}_1 and \boldsymbol{b}_2

Copyright © 2001, Andrew W. Moore

Machine Learning Favorites: Slide 30

Robust Regression---what we're doing

What LOESS robust regression does:

Assume y_k was originally generated using the following recipe:

With probability *p*:

$$y_k = b_0 + b_1 x_k + b_2 x_k^2 + N(0, s^2)$$

But otherwise

 $y_k \sim N(\mathbf{m} \mathbf{s}_{huge}^2)$

Computational task is to find the Maximum Likelihood \boldsymbol{b}_0 , \boldsymbol{b}_1 , \boldsymbol{b}_2 , p, \boldsymbol{m} and \boldsymbol{s}_{huae}

Copyright © 2001, Andrew W. Moore

Machine Learning Favorites: Slide 31

Robust Regression---what we're doing What LOESS robust regression does: Mysteriously, the Assume y_k was originally generated using the reweighting procedure following recipe: does this computation for us. With probability *p*: $y_k = b_0 + b_1 x_k + b_2 x_k^2 + N(0, s^2)$ Your first glimpse of two spectacular letters: But otherwise $y_k \sim N(\boldsymbol{m}_k \boldsymbol{s}_{huge}^2)$ E.M. Computational task is to find the Maximum Likelihood \boldsymbol{b}_0 , \boldsymbol{b}_1 , \boldsymbol{b}_2 , p, \boldsymbol{m} and \boldsymbol{s}_{huge} Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 32

Choosing the attribute to split on

Gender	Rich?	Num. Children	Num. Beany Babies	Age
Female	No	2	1	38
Male	No	0	0	24
Male	Yes	0	5+	72
:	:	:	:	:

MSE(Y|X) = The expected squared error if we must predict a record's Y value given only knowledge of the record's X value

If we're told x=j, the smallest expected error comes from predicting the mean of the Y-values among those records in which x=j. Call this mean quantity $\mathbf{m}_{y}^{x=j}$

Then...

$$MSE(Y \mid X) = \frac{1}{R} \sum_{j=1}^{N_X} \sum_{(k \text{ such that}_k = j)} (y_k - \mu_y^{x=j})^2$$

Copyright © 2001, Andrew W. Moore

```
Machine Learning Favorites: Slide 37
```


4: GMDH (c.f. BACON, AIM)

- Group Method Data Handling
- A very simple but very good idea:
- 1. Do linear regression
- 2. Use cross-validation to discover whether any quadratic term is good. If so, add it as a basis function and loop.
- Use cross-validation to discover whether any of a set of familiar functions (log, exp, sin etc) applied to any previous basis function helps. If so, add it as a basis function and loop.
- 4. Else stop

Copyright © 2001, Andrew W. Moore

Machine Learning Favorites: Slide 44

	Create a hidden unit											
Find funct	Find weights $u^{(0)}_{i}$ to define a new basis function $H^{(0)}(x)$ of the inputs.											
Make errors	Make it specialize in predicting the errors in our original fit:											
Find betwe	Find $\{u^{(0)}_i\}$ to maximize correlation between $H^{(0)}(x)$ and $E^{(0)}$ where $H^{(0)}(\mathbf{x}) = g\left(\sum_{j=1}^m u_j^{(0)} x^{(j)}\right)$											
X ⁽⁰⁾	X ⁽¹⁾		X ^(m)	Y	Y ⁽⁰⁾	E ⁽⁰⁾	H ⁽⁰⁾]				
x ⁽⁰⁾ 1	x ⁽¹⁾ 1		x ^(m) 1	У 1	y ⁽⁰⁾ 1	e ⁽⁰⁾ 1	h ⁽⁰⁾ 1					
x ⁽⁰⁾ 2	$x^{(0)}_{2}$ $x^{(1)}_{2}$ $x^{(m)}_{2}$ y_{2} $y^{(0)}_{2}$ $e^{(0)}_{2}$ $h^{(0)}_{2}$											
÷												
Copyright	Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 50											

	Create next hidden unit											
Find basis	Find weights $u^{(1)}{}_{i}v^{(1)}{}_{0}$ to define a new basis function $H^{(1)}(x)$ of the inputs.											
Make error	Make it specialize in predicting the errors in our original fit:											
Find betw	Find $\{u^{(1)}{}_{i}, v^{(1)}{}_{0}\}$ to maximize correlation between $H^{(1)}(x)$ and $E^{(1)}$ where $H^{(1)}(\mathbf{x}) = g\left(\sum_{j=1}^{m} u^{(1)}_{j} x^{(j)} + v^{(1)}_{0} h^{(0)}\right)$											
X ⁽⁰⁾	X ⁽¹⁾		X ^(m)	Y	Y ⁽⁰⁾	E ⁽⁰⁾	H ⁽⁰⁾	Y ⁽¹⁾	E ⁽¹⁾	H ⁽¹⁾		
x ⁽⁰⁾ 1	$x^{(0)}{}_1 x^{(1)}{}_1 \dots x^{(m)}{}_1 y_1 y^{(0)}{}_1 e^{(0)}{}_1 h^{(0)}{}_1 y^{(1)}{}_1 e^{(1)}{}_1 h^{(1)}{}_1$											
x ⁽⁰⁾ 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
:	:	:	:	:	:	:	:	:	:	:		
Copyrigh	Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 53											

Now look at new errors Find weights $w^{(n)}_{i} p^{(n)}_{j}$ to better fit Y. I.E. to minimize													
Define $e_k^{(n)} = y_k - y_k^{(n)}$													
X ⁽⁰⁾ 1	X ⁽¹⁾		X ^(m)	V1	V ⁽⁰⁾ 1	e ⁽⁰⁾ ,	h ⁽⁰⁾ 1	V ⁽¹⁾	e ⁽¹⁾ ,	h ⁽¹⁾ 1		V ⁽ⁿ⁾	$e^{(n)}$
x ⁽⁰⁾	X ⁽¹⁾ 2		x ^(m)	y ₂	y ⁽⁰⁾	e ⁽⁰⁾	h ⁽⁰⁾ ,	y ⁽¹⁾	e ⁽¹⁾ 2	h ⁽¹⁾ ,		y ⁽ⁿ⁾	$e^{(n)}{}_{2}$
:	:	:	:	:	:	:	:	:	:	:	:	:	:
Copyright © 2001, Andrew W. Moore Machine Learning Favorites: Slide 55													

Create n'th hidden unit...

Find weights $u^{(n)}_{i}v^{(n)}_{i}$ to define a new basis function $H^{(n)}(x)$ of the inputs.

Make it specialize in predicting the errors in our previous fit:

Find $\{u^{(n)}_{i}, v^{(n)}_{j}\}$ to maximize correlation between $H^{(n)}(x)$ and $E^{(n)}$ where $\left(\sum_{i=1}^{m} a_{i}^{(n)}(x) - \sum_{i=1}^{n-1} a_{i}^{(n)}(x)\right)$

$$H^{(n)}(\mathbf{x}) = g\left(\sum_{j=1}^{n} u_{j}^{(n)} x^{(j)} + \sum_{j=1}^{n} v_{j}^{(n)} h^{(j)}\right)$$

$$\underbrace{X^{(0)} \quad X^{(1)} \quad \cdots \quad X^{(m)} \quad Y \quad Y^{(0)} \quad E^{(0)} \quad H^{(0)} \quad Y^{(1)} \quad E^{(1)} \quad H^{(1)} \quad \cdots \quad Y^{(n)} \quad E^{(n)} \quad H^{(n)}}{x^{(0)} \quad x^{(1)} \quad \cdots \quad x^{(m)} \quad y_{1} \quad y^{(0)} \quad e^{(0)} \quad h^{(0)} \quad y^{(1)} \quad e^{(1)} \quad h^{(1)} \quad \cdots \quad y^{(n)} \quad e^{(n)} \quad h^{(n)} \quad x^{(0)} \quad x^{(1)} \quad \cdots \quad x^{(m)} \quad y_{2} \quad y^{(0)} \quad e^{(0)} \quad h^{(0)} \quad y^{(1)} \quad e^{(1)} \quad h^{(1)} \quad \cdots \quad y^{(n)} \quad e^{(n)} \quad h^{(n)} \quad x^{(0)} \quad x^{(1)} \quad x^{(m)} \quad y_{2} \quad y^{(0)} \quad e^{(0)} \quad h^{(0)} \quad y^{(1)} \quad e^{(1)} \quad h^{(1)} \quad \cdots \quad y^{(n)} \quad e^{(n)} \quad h^{(n)} \quad x^{(n)} \quad x^{(m)} \quad y^{(0)} \quad e^{(0)} \quad h^{(0)} \quad y^{(1)} \quad e^{(1)} \quad h^{(1)} \quad \cdots \quad y^{(n)} \quad e^{(n)} \quad h^{(n)} \quad x^{(n)} \quad x^{(m)} \quad y^{(n)} \quad e^{(n)} \quad h^{(n)} \quad x^{(n)} \quad x^{(m)} \quad y^{(n)} \quad x^{(m)} \quad y^{(n)} \quad e^{(n)} \quad h^{(n)} \quad x^{(n)} \quad x^{(n)} \quad x^{(m)} \quad y^{(n)} \quad e^{(n)} \quad h^{(n)} \quad x^{(n)} \quad x^{(n)} \quad x^{(m)} \quad y^{(n)} \quad e^{(n)} \quad h^{(n)} \quad x^{(n)} \quad x^{($$

Copyright © 2001, Andrew W. Moore

Machine Learning Favorites: Slide 56

What You Should Know

- For each of the eight methods you should be able to summarize briefly what they do and outline how they work.
- You should understand them well enough that given access to the notes you can quickly reunderstand them at a moments notice
- But you don't have to memorize all the details
- In the right context any one of these eight might end up being really useful to you one day! You should be able to recognize this when it occurs.

Copyright © 2001, Andrew W. Moore

Machine Learning Favorites: Slide 89

Citat	ions
 Radial Basis Functions T. Poggio and F. Girosi, Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks, Science, 247, 978-982, 1989 LOESS W. S. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, 74, 368, 829-836, December, 1979 GMDH etc http://www.inf.kiev.ua/GMDH-home/ P. Langley and G. L. Bradshaw and H. A. Simon, Rediscovering Chemistry with the BACON System, Machine Learning: An Artificial Intelligence Approach, R. S. Michalski and J. G. Carbonnell and T. M. Mitchell, Morgan Kaufmann, 1983 	 Regression Trees etc Breiman and J. H. Friedman and R. A. Olshen and C. J. Stone, Classification and Regression Trees, Wadsworth, 1984 J. R. Quinlan, Combining Instance-Based and Model-Based Learning, Machine Learning: Proceedings of the Tenth International Conference, 1993 Cascade Correlation etc S. E. Fahlman and C. Lebiere. The cascade- correlation learning architecture. Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1990. http://citeseer.nj.nec.com/fahlman91cascadec orrelation.html J. H. Friedman and W. Stuetzle, Projection Pursuit Regression, Journal of the American Statistical Association, 76, 376, December, 1981 MARS J. H. Friedman, Multivariate Adaptive Regression Splines, Department for Statistics, Stanford University, 1988, Technical Report No. 102
Copyright $\ensuremath{\ensuremath{\mathbb{S}}}$ 2001, Andrew W. Moore	Machine Learning Favorites: Slide 90

45