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Overview
• CSPs defined
• Using standard search for CSPs
• Blindingly obvious improvements

Backtracking search
Forward Checking
Constraint Propagation

• Some example CSP applications
Overview
Waltz Algorithm
Job Shop Scheduling

• Variable ordering
• Value ordering
• Tedious Discussion
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A Constraint Satisfaction Problem

Inside each circle marked V1 .. V6 we must assign: R, G or B.

No two connected circles may be assigned the same symbol.

Notice that two circles have already been given an assignment.
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Formal Constraint Satisfaction 
Problem

A CSP is a triplet { V , D , C }.  A CSP has a finite set of variables V = { V1 , V2
.. VN }.
Each variable may be assigned a value from a domain D of values.
Each member of C is a pair.  The first member of each pair is a set of variables.  
The second element is a set of legal values which that set may take.
Example:
V = { V1 , V2 , V3 , V4 , V5 , V6 }
D = { R , G , B }
C = { (V1,V2) : { (R,G), (R,B), (G,R), (G,B), (B,R) (B,G)},

{ (V1,V3) : { (R,G), (R,B), (G,R), (G,B), (B,R) (B,G)},
:
: }

Obvious point: Usually C isn’t represented explicitly, but by a function.
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How to solve our CSP?

•How about using a search algorithm?
•Define: a search state has variables 1 … k assigned. Values k+1 … n, 
as yet unassigned.

•Start state: All unassigned.
•Goal state: All assigned, and all constraints satisfied.
•Successors of a stated with V1 … Vk assigned and rest unassigned are 
all states (with V1 … Vk the same) with Vk+1 assigned a value from D.

•Cost on transitions: 0 is fine. We don’t care. We just want any solution.
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How to solve our CSP?

START =(V1=? V2=? V3=? V4=? V5=? V6=?)
succs(START) =

(V1=R V2=? V3=? V4=? V5=? V6=?)
(V1=G V2=? V3=? V4=? V5=? V6=?)
(V1=B V2=? V3=? V4=? V5=? V6=?)

What search algorithms could we use?
It turns out BFS is not a popular choice.  Why not?
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DFS for CSPs

What about DFS?

Much more popular.  At least it has a chance of finding an easy answer 
quickly.

What happens if we do DFS with the order of assignments as B tried 
first, then G then R?

This makes DFS look very, very stupid!

Example: http://www.cs.cmu.edu/~awm/animations/constraint/9d.html
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Blindingly obvious improvement –
Consistency Checking: “Backtracking Search”

Don’t ever try successor which causes inconsistency with its neighbors.
– Again, what happens if we do DFS with the order of assignments as B

tried first, then G then R?
– What’s the computational overhead for this?
– Backtracking still looks a little stupid!
– Examples: http://www.cs.cmu.edu/~awm/animations/constraint/9b.html

and http://www.cs.cmu.edu/~awm/animations/constraint/27b.html
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Obvious improvement – Forward Checking

At start, for each variable, record the current set of possible legal 
values for it.
When you assign a value in the search, update set of legal values 
for all variables.  Backtrack immediately if you empty a variable’s 
constraint set.

– Again, what happens if we do DFS with the order of 
assignments as B tried first, then G then R?

– Example: http://www.cs.cmu.edu/~awm/animations/constraint/27f.html

– What’s the computational overhead?
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Constraint Propagation

Forward checking computes the domain of each variable independently at the 
start, and then only updates these domains when assignments are made in the 
DFS that are directly relevant to the current variable.

Constraint Propagation carries this further.  When you delete a value from your 
domain, check all variables connected to you.  If any of them change, delete all 
inconsistent values connected to them, etc…

In the above example it is useless 

Web Example: http://www.cs.cmu.edu/~awm/animations/constraint/27p.html
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Constraint Propagation being non-useless

• In this example, constraint propagation solves the problem 
without search … Not always that lucky!

• Constraint propagation can be done as a preprocessing 
step.  (Cheap).

• Or it can be maintained dynamically during the search.  
Expensive: when you backtrack, you must undo some of 
your additional constraints.
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Graph-coloring-specific Constraint 
Propagation

In the case of Graph Coloring, CP looks simple: 
after we’ve made a search step (instantiated a 
node with a color), propagate the color at that 
node.

PropagateColorAtNode(node,color)
1. remove color from all of “available lists” of our 

uninstantiated neighbors.
2. If any of these neighbors gets the empty set,  it’s time to 

backtrack.
3. Foreach n in these neighbors: if n previously had two or 

more available colors but now has only one color c, run 
PropagateColorAtNode(n,c)
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Graph-coloring-specific Constraint 
Propagation

In the case of Graph Coloring, CP looks simple: 
after we’ve made a search step (instantiated a 
node with a color), propagate the color at that 
node.

PropagateColorAtNode(node,color)
1. remove color from all of “available lists” of our 

uninstantiated neighbors.
2. If any of these neighbors gets the empty set,  it’s time to 

backtrack.
3. Foreach n in these neighbors: if n previously had two or 

more available colors but now has only one color c, run 
PropagateColorAtNode(n,c)

But for General CSP problems, constraint 

propagation can do much more than only 

propagating when a node gets a unique 

value…
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A New CSP (where fancier 
propagation is possible)

• The semi magic square
• Each variable can have value 1, 2 or 3

This row must
sum to 6

V9V8V7

This column 
must sum to 6

V6

V3

This column 
must sum to 6

V5

V2

This column 
must sum to 6

V4

V1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6
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Propagate(A1, A2 ,… An)
finished = FALSE
while not finished

finished = TRUE
foreach constraint C

Assume C concerns variables V1, V2 ,… Vk

Set NewAV1 = {} , NewAV2 = {} , … NewAVk = {}  
Foreach assignment (V1=x1, V2=x2, … Vk=xk) in C

If x1 in AV1 and x2 in AV2 and … xk in AVk

Add x1 to NewAV1 , x2 to NewAV2 ,… xk to NewAVk

for i = 1 , 2 … k
AVi := AVi intersection NewAVi

If AVi was made smaller by that intersection
finished = FALSE

If AVi is empty, we’re toast. Break out with “Backtrack” signal.

General Constraint Propagation

Specification: Takes a set of availability-lists 
for each and every node and uses all the 
constraints to filter out impossible values that 
are currently in availability lists

Details on next slide
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Propagate(A1, A2 ,… An)
finished = FALSE
while not finished

finished = TRUE
foreach constraint C

Assume C concerns variables V1, V2 ,… Vk

Set NewAV1 = {} , NewAV2 = {} , … NewAVk = {}  
Foreach assignment (V1=x1, V2=x2, … Vk=xk) in C

If x1 in AV1 and x2 in AV2 and … xk in AVk

Add x1 to NewAV1 , x2 to NewAV2 ,… xk to NewAVk

for i = 1 , 2 … k
AVi := AVi intersection NewAVi

If AVi was made smaller by that intersection
finished = FALSE

If AVi is empty, we’re toast. Break out with “Backtrack” signal.

General Constraint Propagation
Ai denotes the current set of possible values for 
variable i. This is call-by-reference. Some of the Ai 
sets may be changed by this call (they’ll have one 
or more elements removed)

We’ll keep iterating until we do a 
full iteration in which none of the 
availability lists change. The 
“finished” flag is just to record 
whether a change took place.
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Propagate(A1, A2 ,… An)
finished = FALSE
while not finished

finished = TRUE
foreach constraint C

Assume C concerns variables V1, V2 ,… Vk

Set NewAV1 = {} , NewAV2 = {} , … NewAVk = {}  
Foreach assignment (V1=x1, V2=x2, … Vk=xk) in C

If x1 in AV1 and x2 in AV2 and … xk in AVk

Add x1 to NewAV1 , x2 to NewAV2 ,… xk to NewAVk

for i = 1 , 2 … k
AVi := AVi intersection NewAVi

If AVi was made smaller by that intersection
finished = FALSE

If AVi is empty, we’re toast. Break out with “Backtrack” signal.

General Constraint Propagation
NewAi is going to be filled up 
with the possible values for 
variable Vi taking into account 
the effects of constraint C

After we’ve finished all the 
iterations of the foreach
loop, NewAi contains the 
full set of possible values of 
variable Vi taking into 
account the effects of 
constraint C.

Slide 18

General Constraint Propagation
Propagate(A1, A2 ,… An)

finished = FALSE
while not finished

finished = TRUE
foreach constraint C

Assume C concerns variables V1, V2 ,… Vk

Set NewAV1 = {} , NewAV2 = {} , … NewAVk = {}  
Foreach assignment (V1=x1, V2=x2, … Vk=xk) in C

If x1 in AV1 and x2 in AV2 and … xk in AVk

Add x1 to NewAV1 , x2 to NewAV2 ,… xk to NewAVk

for i = 1 , 2 … k
AVi := AVi intersection NewAVi

If AVi was made smaller by that intersection
finished = FALSE

If AVi is empty, we’re toast. Break out with “Backtrack” signal.

If this test is satisfied that means that there’s at least one 
value q such that we originally thought q was an 
available value for Vi but we now know q is impossible.

If AVi is empty we’ve proved that there are no solutions for the 
availability-lists that we originally entered the function with
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Propagate on Semi-magic Square

• The semi magic square
• Each variable can have value 1, 2 or 3

This row must
sum to 6

123123123

This column 
must sum to 6

123

123

This column 
must sum to 6

123

123

This column 
must sum to 6

123

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6
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Propagate on Semi-magic Square

• The semi magic square
• Each variable can have value 1, 2 or 3

This row must
sum to 6

123123123

This column 
must sum to 6

123

123

This column 
must sum to 6

123

123

This column 
must sum to 6

123

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

(V1,V2,V3) must be one of
(1,2,3)
(1,3,2)
(2,1,3)
(2,2,2)
(2,3,1)
(3,1,2)
(3,2,1)
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Propagate on Semi-magic Square

• The semi magic square
• Each variable can have value 1, 2 or 3

This row must
sum to 6

123123123

This column 
must sum to 6

123

123

This column 
must sum to 6

123

123

This column 
must sum to 6

123

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

(V1,V2,V3) must be one of
(1,2,3)
(1,3,2)
(2,1,3)
(2,2,2)
(2,3,1)
(3,1,2)
(3,2,1)

• NewALV1 = { 1 }
• NewALV2 = { 2 , 3 }
• NewALV3 = { 2 , 3 }
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After doing first row constraint…

This row must
sum to 6

123123123

This column 
must sum to 6

123

23

This column 
must sum to 6

123

23

This column 
must sum to 6

123

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6
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After doing all row constraints and 
column constraints…

This row must
sum to 6

12312323

This column 
must sum to 6

123

23

This column 
must sum to 6

123

23

This column 
must sum to 6

23

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6
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And after doing diagonal 
constraint…

This row must
sum to 6

2312323

This column 
must sum to 6

123

23

This column 
must sum to 6

23

23

This column 
must sum to 6

23

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

CP has now iterated through all constraints once. 
But does it make further progress when it tries 
iterating through them again?
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And after doing another round of 
constraints…

This row must
sum to 6

231223

This column 
must sum to 6

12

23

This column 
must sum to 6

23

23

This column 
must sum to 6

23

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

YES! And this showed a case of a 
constraint applying even when none of 
the variables involved was down to a 
unique value.

So.. any more changes on 

the next iteration?
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CSP Search with Constraint Propagation

CPSearch(A1, A2 ,… An)
Let i = lowest index such that Ai has more than one value
foreach available value x in Ai

foreach k in 1, 2.. n
Define  A’k := Ak

A’i := { x }
Call Propagate(A’1, A’2 ,… A’n)
If no “Backtrack” signal

If A’1, A’2 ,… A’n are all unique we’re done!
Recursively Call CPSearch(A’1, A’2 ,… A’n)

Details on next slide
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CSP Search with Constraint Propagation

CPSearch(A1, A2 ,… An)
Let i = lowest index such that Ai has more than one value
foreach available value x in Ai

foreach k in 1, 2.. n
Define  A’k := Ak

A’i := { x }
Call Propagate(A’1, A’2 ,… A’n)
If no “Backtrack” signal

If A’1, A’2 ,… A’n are all unique we’re done!
Recursively Call CPSearch(A’1, A’2 ,… A’n)

Specification: Find out if there’s 
any combination of values in the 
combination of the given 
availability lists that satisifes all 
constraints.

At this point the A-primes are a copy 
of the original availability lists except 
A’i has committed to value x.

This call may prune away 
some values in some of 
the copied availability lists

Assuming that we terminate deep in the recursion if we find a 
solution, the CPSeach function only terminates normally if no 
solution is found.
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CSP Search with Constraint Propagation

CPSearch(A1, A2 ,… An)
Let i = lowest index such that Ai has more than one value
foreach available value x in Ai

foreach k in 1, 2.. n
Define  A’k := Ak

A’i := { x }
Call Propagate(A’1, A’2 ,… A’n)
If no “Backtrack” signal

If A’1, A’2 ,… A’n are all unique we’re done!
Recursively Call CPSearch(A’1, A’2 ,… A’n)

What’s the top-level call?

Call with that Ai = complete set of possible values for Vi . 
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CSP Search with Constraint Propagation

CPSearch(A1, A2 ,… An)
Let i = lowest index such that Ai has more than one value
foreach available value x in Ai

foreach k in 1, 2.. n
Define  A’k := Ak

A’i := { x }
Call Propagate(A’1, A’2 ,… A’n)
If no “Backtrack” signal

If A’1, A’2 ,… A’n are all unique we’re done!
Recursively Call CPSearch(A’1, A’2 ,… A’n)

What’s the top-level call?

Call with that Ai = complete set of possible values for Vi . 
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Semi-magic Square 
CPSearch Tree

123123123
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12
12

12
3

123123123
123
123

123
123

123
2

213
1
3

3
2

2
1

312
1
2

2
3

3
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Semi-magic Square 
CPSearch Tree

123123123
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123
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2
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2
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3
1

In fact, we never 

even consider these 

because we stop at 

first success
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Some real CSPs
• Graph coloring is a real, and useful, CSP.  Applied to 

problems with many hundreds of thousands of nodes.  
Not very AI-esque.

• VLSI or PCB board layout.
• Selecting a move in the game of “minesweeper”.

211
100
100
100

Which squares have a bomb?  Squares with numbers don’t.  Other squares 
might.  Numbers tell how many of the eight adjacent squares have bombs.  We 
want to find out if a given square can possibly have a bomb….
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“Minesweeper” CSP

V5V6V7V8

V4211
V3100
V2100
V1100

V = { V1 , V2 , V3 , V4 , V5 , V6 , V7 , V8 }, D = { B (bomb) , S (space) }

C = { (V1, V2) : { (B,S) , (S,B) }, (V1, V2, V3,) : { (B,S,S) , (S,B,S) , (S,S,B)},…}

V1

V2

V3

V4

V5

V6

V7

V8
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The Waltz algorithm
One of the earliest examples of a computation posed as a CSP.
The Waltz algorithm is for interpreting line drawings of solid polyhedra.

Look at all intersections.

What kind of intersection could this be? A  
concave intersection of three faces? Or 
an external convex intersection?

Adjacent intersections impose constraints on each other.  Use CSP to 
find a unique set of labelings.  Important step to “understanding” the 
image.
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Waltz Alg. on simple scenes
Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small movements of the 

eye.
Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of arrow denoting 
“solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

Slide 36

18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above 
manners.
The junctions must be labeled so that lines are labeled consistently at both 
ends.
Can you formulate that as a CSP?  FUN FACT: Constraint Propagation always 
works perfectly.
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Waltz Examples
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Scheduling
A very big, important use of CSP methods.

• Used in many industries.  Makes many multi-million dollar decisions.
• Used extensively for space mission planning.
• Military uses.

People really care about improving scheduling algorithms!

Problems with phenomenally huge state spaces.  But for which 
solutions are needed very quickly.

Many kinds of scheduling problems e.g.:
Job shop:  Discrete time; weird ordering of operations possible; set 
of separate jobs.
Batch shop:  Discrete or continuous time; restricted operation of 
ordering; grouping is important.
Manufacturing cell:  Discrete, automated version of open job shop.
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Job Shop scheduling
At a job-shop you make various products.  Each product is a “job” to be done.  
E.G.

Job1 = Make a polished-thing-with-a-hole
Job2 = Paint and drill a hole in a widget

Each job requires several operations.  E.G.
Operations for Job1: Polish, Drill
Operations for Job2: Paint, Drill

Each operation needs several resources.  E.G.
Polishing needs the Polishing machine
Polishing needs Pat (a Polishing expert)
Drilling needs the Drill
Drilling needs Pat (also a Drilling expert)

Or Drilling can be done by Chris
Some operations need to be done in a particular order (e.g. Paint after you’ve 
Drilled)
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Job Shop Formalized
A Job Shop problem is a pair ( J , RES )
J is a set of jobs J = {j1 , j2 , … jn}
RES is a set of resources RES = {R1 .. Rm}

Each job jI is specified by:
• a set of operations OI = {OI

1 OI
2 … OI

n(I) }
• and must be carried out between release-date rdI and due-date ddI.
• and a partial order of operations: (OI

i before OI
j), (OI

i’ before OI
j’), etc…

Each operation OI
i has a variable start time stIi and a fixed duration duI

i and 
requires a set of resources.  e.g.: OI

i requires { RI
i1 , RI

i2 … }.

Each resource can be accomplished by one of several possible physical 
resources, e.g. RI

i1 might be accomplished by any one of {rI
ij1 , rI

ij2 , …}.  Each 
of the rI

ijks are a member of RES.
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Job Shop Example
j1 = polished-hole-thing = { O1

1 , O1
2 }

j2 = painted-hole-widget = { O2
1 , O2

2 }
RES = { Pat,Chris,Drill,Paint,Drill,Polisher }
O1

1 = polish-thing: need resources…
{ R1

11 = Pat , R1
12 = Polisher }

O1
2 = drill-thing: need resources…

{ R1
21 = (r1

211=Pat or r1
212=Chris), R1

22 = Drill }
O2

1 = paint-widget: need resources…
{ R2

11 = Paint }
O2

2 = drill-widget : need resources…
{ R2

21 = (r2
211=Pat or r2

212=Chris), R2
22 = Drill }

Precedence constraints : O2
2 before O2

1.  All operations take one time unit duI
i

= 1 forall i,I.  Both jobs have release-date rdI = 0 and due-date ddI = 1.
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Job-shop: the Variables and 
Constraints

Variables
• The operation state times stIi
• The resources RI

ij (usually these are obvious from the definition of 
OI

i.  Only need to be assigned values when there are alternative 
physical resources available, e.g. Pat or Chris for operating the drill).

Constraints:
• Precedence constraints.  (Some OI

is must be before some other 
OI

js).
• Capacity constraints.  There must never be a pair of operations with 

overlapping periods of operation that use the same resources.

Non-challenging question.  Can you schedule our Job-shop?
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A slightly bigger example

4 jobs.  Each 3 units long.  All jobs have release date 0 and due date 
15.  All operations use only one resource each.

beforebeforeO1
1 R1 O1

2 R2 O1
3 R3

beforeO2
1 R1 O2

2 R2

beforebeforeO3
1 R3 O3

2 R1 O3
3 R2

beforeO4
1 R4 O4

2 R2
Example from [Sadeh and Fox, 96]: Norman M. Sadeh and Mark S. Fox, Variable and 
Value Ordering Heuristics for the Job Shop Scheduling Constraint Satisfaction Problem, 
Artificial Intelligence Journal, Number Vol 86, No1, pages 1-41, 1996.  Available from 
citeseer.nj.nec.com/sadeh96variable.html
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Further CSP techniques
Let’s look at some other important CSP methods.  Keep the 
job-shop example in mind.
Here’s another graph-coloring example (you’re now 
allowed R, G, B and Y)

V3

V6

V2

R
G

V1

V5

V4

V7 Y
B
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General purpose Variable Ordering Heuristics
1. Most constrained variable.
2. Most constraining variable.

V3

V6

V2

R
G

V1

V5

V4

V7 Y
B
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General purpose Value Ordering Heuristics

V3

V6

V2

R
G

V1

V5

V4

V7 Y
B

A good general purpose one is “least-
constrained-value”.  Choose the value which 
causes the smallest reduction in number of 
available values for neighboring variables
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General purpose CSP algorithm
(From Sadeh+Fox)
1. If all values have been successfully assigned then stop, else go

on to 2.
2. Apply the consistency enforcing procedure (e.g. forward-checking 

if feeling computationally mean, or constraint propagation if 
extravagant.  There are other possibilities, too.)

3. If a deadend is detected then backtrack (simplest case: DFS-type 
backtrack.  Other options can be tried, too).  Else go on to step 4.

4. Select the next variable to be assigned (using your variable 
ordering heuristic).

5. Select a promising value (using your value ordering heuristic).
6. Create a new search state.  Cache the info you need for 

backtracking.  And go back to 1.
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Job-shop example. Consistency 
enforcement

Sadeh claims that generally forward-checking is 
better, computationally, than full constraint 
propagation.  But it can be supplemented with a 
Job-shop specific TRICK.

The precedence constraints (i.e. the available 
times for the operations to start due to the ordering 
of operations) can be computed exactly, given a 
partial schedule, very efficiently.
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Reactive CSP solutions
• Say you have built a large schedule.  
• Disaster!  Halfway through execution, one of the 

resources breaks down.  We have to reschedule!
• Bad to have to wait 15 minutes for the scheduler to 

make a new suggestion.

Important area of research: efficient 
schedule repair algorithms.

• Question:  If you expect that resources may 
sometimes break, what could a scheduling program 
do to take that into account?

• Unrelated Question:  Why has none of this lecture 
used A*?
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Other approaches.  And What You 
Should Know

Other Approaches:
Hill-climbing, Tabu-search, Simulated annealing, Genetic 
Algorithms.  (to be discussed later)

What you should know:
How to formalize problems as CSPs
Backtracking Search, Forward Checking, Constraint Propagation
The Waltz algorithm
You should understand and appreciate the way job-shop scheduling 
is formalized.  It is an excellent representative example of how
important well-studied constraint satisfaction problems are 
represented.
Understand examples of Variable ordering and Value ordering 
heuristics

In those cases where your lecturer or these handouts are too incomprehensible, 
consult Chap 5 of the Russell handout. Winston’s “Artificial Intelligence” book has 
good discussion of constraint satisfaction and Waltz algorithm.


