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Overview
• Definition of games and game terminology

• Game trees and game-theoretic values

• Computing game-theoretic values with recursive 
minimax.

• Other ways to compute game-theoretic value: Dynamic 
Programming copes with stalemates.

• Alpha-beta algorithm (good news.. it’s not really as fiddly 
as is looks)

• Playing games in real-time

• Non-determinism
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2-player zero-sum discrete finite 
deterministic games of perfect information

What do these terms mean?

• Two player: Duh!

• Zero-sum: In any outcome of any game, Player A’s gains 
equal player B’s losses.  (Doesn’t mean fairness:  “On average, two equal 
players will win or lose equal amounts” not necessary for zero-sum.)

• Discrete: All game states and decisions are discrete values.

• Finite: Only a finite number of states and decisions.

• Deterministic: No chance (no die rolls).

• Games: See next page

• Perfect information: Both players can see the state, and 
each decision is made sequentially (no simultaneous moves).
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Which of these are: 2-player zero-sum discrete finite 
deterministic games of perfect information

• Two player: Duh!

• Zero-sum: In any outcome of any 
game, Player A’s gains equal player B’s 
losses. 

• Discrete: All game states and decisions 
are discrete values.

• Finite: Only a finite number of states and 
decisions.

• Deterministic: No chance (no die 
rolls).

• Games: See next page

• Perfect information: Both players 
can see the state, and each decision is 
made sequentially (no simultaneous 
moves).
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Definition
A Two-player zero-sum discrete finite deterministic game of perfect information is a 
quintuplet:  ( S , I , Succs , T , V ) where

S = a finite set of states (note: state includes information 
sufficient to deduce who is due to move)

I
Succs

T

V

= the initial state

= a function which takes a state as input and returns a set of 
possible next states available to whoever is due to move

= a subset of S.  It is the terminal states: the set of states at 
which the game is over

= a mapping from terminal states to real numbers.  It is the 
amount that A wins from B. (If it’s negative A loses money 
to B).

Convention: assume Player A  moves first.
For convenience: assume turns alternate.
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Nim: informal description
1. We begin with a number of piles of matches.
2. In one’s turn one may remove any number of matches from one pile.
3. The last person to remove a match loses.

In II-Nim, one begins with two piles, each with two matches…

( _ , _ )-A ( _ , i )-A ( _ , ii )-A
( i  , _ )-A ( i  , i )-A ( i  , ii )-A
( ii , _ )-A ( ii , i )-A ( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B
( i  , _ )-B ( i  , i )-B ( i  , ii )-B
( ii , _ )-B ( ii , i )-B ( ii , ii )-B

S =
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Nim: informal description

( _ , _ )-A ( _ , i )-A ( _ , ii )-A
( i  , i )-A ( i  , ii )-A

( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B
( i  , i )-B ( i  , ii )-B

( ii , ii )-B

S =

1. We begin with a number of piles of matches.
2. In one’s turn one may remove any number of matches from the pile.
3. The last person to remove a match loses.

In II-Nim, one begins with two matches, each with two piles…
A common trick: By symmetry, some of the states are 

trivially equivalent (e.g. (_,ii)-A and (ii,_)-A).  Make them one 

state by some canonical description (e.g. left pile never 

larger than right).
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II-Nim
( _ , _ )-A ( _ , i )-A ( _ , ii )-A ( i , i )-A ( i , ii )-A ( ii , ii )-A S = a finite set of states (note: 

state includes information 
sufficient to deduce who is 
due to move) ( _ , _ )-B ( _ , i )-B ( _ , ii )-B ( i , i )-B ( i , ii )-B ( ii , ii )-B 

( ii , ii )-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

( _ , _ )-A

I

V( _ , _ )-A = +1

the initial state

a function which takes a 
state as input and returns a 
set of possible next states 
available to whoever is due 
to move

a subset of S.  It is the 
terminal states

Maps from terminal states 
to real numbers.  It is the 
amount that A wins from B. 

Succs

T
V

=

Succs(_,i)-B = { (_,_)-A }=

= ( _ , _ )-B 
= V( _ , _ )-B = -1
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II-Nim Game 
Tree

( _ , _ )-A ( _ , i )-A ( _ , ii )-A ( i , i )-A ( i , ii )-A ( ii , ii )-A S =

( _ , _ )-B ( _ , i )-B ( _ , ii )-B ( i , i )-B ( i , ii )-B ( ii , ii )-B 

( ii , ii )-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

( _ , _ )-A

V( _ , _ )-A = +1

=I

Succs
=

T

V

Succs(_,i)-B = { (_,_)-A }

= ( _ , _ )-B 

= V( _ , _ )-B = -1(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
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Game theoretic value
Game theoretic value (also know as the minimax value) of a state is:
“the value of a terminal that will be reached assuming both players use 

their optimal strategy.”
Easy to fill in the tree bottom up to find minimax values of all states:

Let D = max depth of game tree
For i = D to 1

For each node n at depth i
If n is a terminal node

MMV(n) = V(n)
Else if Player A is due to move at node n

Else (Player B must be due to move and..)

= 1 + maximum number of 
moves in any possible game

)'(MMVmax)(MMV
)(Succs'

nn
nn∈

=

)'(MMVmin)(MMV
)(Succs'

nn
nn∈

=

This must’ve been 
defined because it is 
at depth i+1

Ditto
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Game theoretic value
Game theoretic value (also know as the minimax value) of a state is:
“the value of a terminal that will be reached assuming both players use 

their optimal strategy.”
Easy to fill in the tree bottom up to find minimax values of all states:

Let D = max depth of game tree
For i = D to 1

For each node n at depth i
If n is a terminal node

MMV(n) = V(n)
Else if Player A is due to move at node n

Else (Player B must be due to move and..)

= 1 + maximum number of 
moves in any possible game

)'(MMVmax)(MMV
)(Succs'

nn
nn∈

=

)'(MMVmin)(MMV
)(Succs'

nn
nn∈

=

This must’ve been 
defined because its 
at depth i+1

Ditto

With Branching factor b and D moves in the 

game this takes time and space O(bD)

Can we do the same thing with less space?
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Minimax Algorithm
Is it really necessary to explicitly store the whole tree in memory?  Of 
course not.  We can do the same trick that Depth First Search and use 
only O(D) space

MinimaxValue(S)=
If (S is a terminal)

return V(S)
Else

Let { S1, S2, … Sk } = Succs(S)
Let vi = MinimaxValue(Si) for each i
If Player-to-move(S) = A

return 

else
return

iki
V

}2,1{
max

K∈

iki
V

}2,1{
min

K∈

Slide 18



Questions
• What if there are loops 

possible in the game?MinimaxValue(S)=
If (S is a terminal)

return V(S)
Else

Let { S1, S2, … Sk } = Succs(S)
Let vi = MinimaxValue(Si) for each i
If Player-to-move(S) = A

return 

else
return

iki
V

}2,1{
max

K∈

iki
V

}2,1{
min

K∈

• This is a depth-first search 
algorithm.  Would a breadth-
first version be possible?  
How would it work?
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Questions
• What if there are loops 

possible in the game?
• Is our recursive-minimax 

guaranteed to succeed?
• Is our recursive-minimax 

guaranteed to fail?
• What problems do loops 

cause for our definition 
of minimax value (i.e. 
game-theoretic value)?

• How could we fix our 
recursive minimax 
program?
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first version be possible?  
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Dynamic Programming
Say you have a game with N states.  The length of the 
game is usually l moves.  There are b successors of each 
state.
Minimax requires O(bl) states expanded.
This is best-case as well as worst-case (unlike DFS for 
simple search problems, which in best-case could be O(l)).
What if the number of states is smaller than bl?  e.g.. in 
chess, bl=10120, but N= a mere 1040

Dynamic Programming is a better method in those cases, if 
you can afford the memory.
DP costs only O(Nl)
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DP for Chess Endgames
Suppose one has only, say, 4 pieces in total left on the board. 
With enough compute power you can compute, for all such 
positions, whether the position is a win for Black, White, or a 
draw.

Assume N such positions.

1. With each state, associate an integer.  A state code, so there’s a 
1-1 mapping between board positions and integers from 0…N-1.

2. Make a big array (2 bits per array entry) of size N.  Each element 
in the array may have one of three values: 

• ?:  We don’t know who wins from this state
• W:  We know white’s won from here
• B:  We know black’s won from here
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DP for Chess Endgames (ctd)
3. Mark all terminal states with their values (W or B)
4. Look through all states that remain marked with ?.

For states in which W is about to move:
• If all successor states are marked B, mark the current state as B.
• If any successor state is marked W, mark the current state as W.
• Else leave current state unchanged.

For states in which B is about to move:
• If all successor states are marked W, mark the current state as W.
• If any successor state is marked B, mark the current state as B.
• Else leave current state unchanged

5. Goto 4, but stop when one whole iteration of 4 produces no 
changes.

6. Any state remaining at ? is a state from which no-one can force a 
win.
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Suppose you knew that the only possible outcomes of the 
game were -1 and 1.  What computation could be saved?

(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
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Suppose you knew that the only possible outcomes of the 
game were -1 and 1.  What computation could be saved?

(ii ii) A

(i  ii) B (- ii) B
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Answer: in general a lot (though not much here).  If any successor is a forced 
win for the current player, don’t bother with expanding further successors.

What if you didn’t know the range of possible outcome values?  We’ll see 
that this is an important question.



How can you cut-off 
with arbitrary terminal 

values?
(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +3.7

(- i) B (- -) B -1.9 (- i) B (- -) B -0.3 (- -) B -8.1

(- -) A +0.08(- -) A +2.4
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Just do the depth first search as normal, but when you discover something that 

means your parent would definitely not choose you, don’t bother with the rest of 

your successors.

In fact, it’s not just your parent you should worry about, but any of your ancestors.

How can you cut-off 
with arbitrary terminal 

values?
(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +3.7

(- i) B (- -) B -1.9 (- i) B (- -) B -0.3 (- -) B -8.1

(- -) A +0.08(- -) A +2.4



An ancestor causing cut-off
(    )-a

(    )-b

(    )-a

(    )-b

(    )-a

(    )-b

(    )-a+2

(    )-b

( * )-a

+1

Suppose we’ve so far done a full depth first search, expanding left-most 

successors first, and have arrived at the node marked * (and 
discovered its value is +1).
What can we cut off in the rest of the search, and why?
General rule. We can be sure a node will not be visited if we’re sure 
that either player has a better alternative at any ancestor of that node.
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The general cutoff rule
In example: let α = max(v1, v3, 
v5).  If min(v6, v7)≤α, then we can 
be certain that it is worthless 
searching the tree from the 
current node or the sibling on its 
right.
In general: if at a B-move node, 
let α = max of all A’s choices 
expanded on current path.  Let β
= min of B’s choices, including 
those at current node.  Cutoff is  
β ≤ α.
In general: Converse rule at an 
A-move node.

(  )-a

(  )-a

(  )-b

(  )-b

(  )-a

(  )-b

v1

v3

v4

v2

v5

v6

v7

?

??

?
?

?
Current
Node
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alpha-beta pruning* (from Russell)
function Max-Value (s,α,β)
inputs:

s: current state in game, A about to play
α: best score (highest) for A along path to s
β: best score (lowest) for B along path to s

output: min(β , best-score (for A) available from s)
if ( s is a terminal state )
then return ( terminal value of s )
else for each s’ in Succ(s)

α := max( α , Min-value(s’,α,β))
if ( α ≥ β ) then return β

return α
function Min-Value(s’,α,β)
output: max(α , best-score (for B) available from s )

if ( s is a terminal state )
then return ( terminal value of s)
else for each s’ in Succs(s)

β := min( β , Max-value(s’,α,β))
if (β ≤ α ) then return α

return β

Thanks to Ameya Gujar

for pointing out an earlier 

typo here. The version 

you now see is the 

correct version.

*Assumes moves are alternate
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How useful is alpha-beta?
What is the best possible case performance of alpha beta?  Suppose 
that you were very lucky in the order in which you tried all the node 
successors.  How much of the tree would you examine?

In the best case, the number of nodes you need to search in the tree is 
O(bd/2)…the square root of the recursive minimax cost.

Questions:

Does alpha-beta behave sensibly with loops?

What can we do about large realsized games with huge numbers of 
states (e.g. chess)?
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Game-Playing and Game-Solving
Two very different activities.

So far, we have been solely concerned with finding the true game-
theoretic value of a state.

But what do real chess-playing programs do?

They have a couple of interesting features that the search and planning 
problems we’ve discussed to date on this course don’t have:

⌂ They cannot possibly find guaranteed solution.

⌂ They must make their decisions quickly, in real time.

⌂ It is not possible to pre-compute a solution.

The overwhelmingly popular solution to these problems are the well-
known heuristic evaluation functions for games.
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Eval. functions in games
An evaluation function maps states to a number.  The larger the 
number, the larger the true game-theoretic position is estimated to be.

Search a tree as deeply as affordable.
Leaves of the tree you search are not leaves of the game tree, but 
are instead intermediate nodes.
The value assigned to the leaves are from the evaluation function.

Intuitions

Visibility: the evaluation function will be more accurate nearer the end 
of the game, so worth using heuristic estimates from there.
Filtering: if we used the evaluation function without searching, we’d be 
using a handful of inaccurate estimates.  By searching we are 
combining thousands of these estimates, & we hope, eliminating noise.
Dubious intuition.  Counter-examples.  But often works very well in real games.
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Other important issues for real 
game playing programs

• How to decide how far to search if you only have a fixed time to
make a decision.  What’s the obvious sensible answer?

• Quiescence.  What if you stop the search at a state where 
subsequent moves dramatically change the evaluation?

• The solution to the quiescence problem is a sensible technique called 
quiescence search.

• The horizon problem.  What if s is a state which is clearly bad 
because your opponent will inevitably be able to do something bad 
to you?  But you have some delaying tactics.  The search algorithm 
won’t recognize the state’s badness if the number of delaying moves 
exceeds the search horizon.

• Endgames are easy to play well.  How?
• Openings fairly easy to play well.  How?
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What if you think you’re certainly going to lose?
(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
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What should A do in this situation?

What heuristics/assumptions could be used to cause A to 
make that decision?  Two common methods.



Solving Games
Solving a game means proving the game-theoretic value of the start 
state.

Some games have been solved.  Usually by brute force dynamic 
programming.  (e.g. Four-in-a-row, many chess endgames)

Or brute force dynamic programming back from end of game, to create 
an end-game database, in combination with alpha-beta search from the 
start of the game.  (Nine men’s morris)

Or mostly brute force, with some game specific analysis (Connect-4)

Checkers may not be far from being solved.

Solving a game is often very different from playing well at the game.
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2 player zero-sum finite NONdeterministic
games of perfect information

The search tree now includes states where neither player 
makes a choice, but instead a random decision is made 
according to a known set of outcome probabilities.

Nondeterministic 
= stochastic

Game theory value of a state is the expected final value if both players 
are optimal.
If no loops, computing this is almost as easy as recursive minimax.  Is there alpha-beta 
version?

(  )-a

(  )-chance

(  )-b (  )-b

-20+4   

(  )-b

(  )-chance

+3

(  )-a

+10

(  )-a

-5

(  )-a

p=0.5 p=0.2

p=0.5 p=0.5
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What you should know
• What makes a game a Two Player Zero-Sum Discrete 

Finite Deterministic Game of Perfect Information
• What is the formal definition of the above 
• What is a Game Tree
• What is the minimax value of a game
• What assumptions minimax makes about the game
• Minimax Search
• Alpha Beta Search
• Use of Evaluation Functions for very big games
• Why it’s easy to extend this to Two Player Zero-Sum 

Discrete Finite Stochastic Game of Perfect Information
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What you should know
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• What makes a game a Two Player Zero-Sum Discrete 
Finite Deterministic Game of Perfect Information

• What is the formal definition of the above 
• What is a Game Tree
• What is the minimax value of a game
• What assumptions minimax makes about the game
• Minimax Search
• Alpha Beta Search
• Use of Evaluation Functions for very big games
• Why it’s easy to extend this to Two Player Zero-Sum 

Discrete Finite Stochastic Game of Perfect Information

Next Up:

Other classes of games, requiring bluffing, deception, 

altruism and sneaky scheming and uncertainty about 

what your so-called “friends” really want… everything 

our AI systems need for taking part in the real world!
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