Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials. Comments and corrections gratefully received.

Gaussians

Andrew W. Moore Professor School of Computer Science Carnegie Mellon University

www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

Copyright © Andrew W. Moore

Slide 1

Gaussians in Data Mining

- · Why we should care
- The entropy of a PDF
- Univariate Gaussians
- Multivariate Gaussians
- Bayes Rule and Gaussians
- Maximum Likelihood and MAP using Gaussians

Copyright © Andrew W. Moore

ide 2

Why we should care

- Gaussians are as natural as Orange Juice and Sunshine
- We need them to understand Bayes Optimal Classifiers
- We need them to understand regression
- · We need them to understand neural nets
- We need them to understand mixture models

• ...

(You get the idea)

Copyright © Andrew W. Moore

Entropy of a PDF

Entropy of
$$X = H[X] = -\int_{x=-\infty}^{\infty} p(x) \log p(x) dx$$

Natural log (In or log_e)

The larger the entropy of a distribution...

- ...the harder it is to predict
- ...the harder it is to compress it
- ...the less spiky the distribution

Copyright © Andrew W. Moore

The "box" distribution
$$p(x) = \begin{cases} \frac{1}{w} & \text{if } |x| \leq \frac{w}{2} \\ 0 & \text{if } |x| > \frac{w}{2} \end{cases}$$

$$1/w$$

$$-w/2 \qquad 0 \qquad w/2$$

$$H[X] = -\int_{x=-\infty}^{\infty} p(x) \log p(x) dx = -\int_{x=-w/2}^{w/2} \frac{1}{w} \log \frac{1}{w} dx = -\frac{1}{w} \log \frac{1}{w} \int_{x=-w/2}^{w/2} dx = \log w$$
Copyright © Andrew W. Moore

The Hat distribution
$$p(x) = \begin{cases} \frac{w - |x|}{w^2} & \text{if } |x| \leq w \\ 0 & \text{if } |x| > w \end{cases}$$

$$E[X] = 0$$

$$Var[X] = \frac{w^2}{6}$$
Copyright © Andrew W. Moore

Unit variance Gaussian

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$E[X] = 0$$

$$Var[X] = 1$$

$$H[X] = -\int_{x=-\infty}^{\infty} p(x) \log p(x) dx = 1.4189$$

Copyright © Andrew W. Moor

Slide 13

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$E[X] = \mu$$

$$Var[X] = \sigma^2$$

Copyright © Andrew W. Moore

Shorthand: We say X ~ N(μ , σ^2) to mean "X is distributed as a Gaussian with parameters μ and σ^2 ".

In the above figure, $X \sim N(100,15^2)$

Copyright © Andrew W. Moore

Slide 15

The Error Function

Assume $X \sim N(0,1)$

Define ERF(x) = P(X < x) = Cumulative Distribution of X

$$ERF(x) = \int_{z=-\infty}^{x} p(z)dz$$
$$= \frac{1}{\sqrt{2\pi}} \int_{z=-\infty}^{x} \exp\left(-\frac{z^{2}}{2}\right) dz$$

Copyright © Andrew W. Moore

Using The Error Function

Assume X ~ N(μ , σ^2) P(X<x| μ , σ^2) = $ERF(\frac{x-\mu}{\sigma^2})$

Copyright © Andrew W. Moore

Slide 17

The Central Limit Theorem

- If $(X_1, X_2, ... X_n)$ are i.i.d. continuous random variables
- Then define $z = f(x_1, x_2, ... x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$
- As n-->infinity, p(z)--->Gaussian with mean E[X_i] and variance Var[X_i]

Somewhat of a justification for assuming Gaussian noise is common

Copyright © Andrew W. Moore

Other amazing facts about Gaussians

• Wouldn't you like to know?

• We will not examine them until we need to.

Copyright © Andrew W. Moore

Slide 19

Bivariate Gaussians

Write r.v.
$$\mathbf{X} = \begin{pmatrix} X \\ Y \end{pmatrix}$$
 Then define $X \sim N(\mathbf{\mu}, \mathbf{\Sigma})$ to mean

$$p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Where the Gaussian's parameters are...

$$\mathbf{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} \quad \mathbf{\Sigma} = \begin{pmatrix} \sigma^2_x & \sigma_{xy} \\ \sigma_{xy} & \sigma^2_y \end{pmatrix}$$

Where we insist that Σ is symmetric non-negative definite

opyright © Andrew W. Moore

Bivariate Gaussians

Write r.v.
$$\mathbf{X} = \begin{pmatrix} X \\ Y \end{pmatrix}$$
 Then define $X \sim N(\mathbf{\mu}, \mathbf{\Sigma})$ to mean

$$p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right)$$

Where the Gaussian's parameters are...

$$\mathbf{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} \quad \mathbf{\Sigma} = \begin{pmatrix} \sigma^2_x & \sigma_{xy} \\ \sigma_{xy} & \sigma^2_y \end{pmatrix}$$

Where we insist that Σ is symmetric non-negative definite

It turns out that $E[X] = \mu$ and $Cov[X] = \Sigma$. (Note that this is a resulting property of Gaussians, not a definition)*

*This note rates 7.4 on the pedanticness scale

pyright © Andrew W. Moore

Evaluating
$$p(\mathbf{x})$$
: Step 1 $p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu}))$

1. Begin with vector **x**

• X

μ

opyright © Andrew W. Moore

Evaluating
$$p(\mathbf{x})$$
: Step 2
$$p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right)$$

- 1. Begin with vector **x**
- Define $\delta = x \mu$

opyright © Andrew W. Moore

- Evaluating $p(\mathbf{x})$: Step 3 $p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} \mathbf{\mu})\right)$
 - 1. Begin with vector **x**
 - 2. Define $\delta = x \mu$
 - 3. Count the number of contours crossed of the ellipsoids formed Σ^{-1}

 $D = \text{this count} = \text{Sqrt}(\boldsymbol{\delta}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\delta})$ = Mahalonobis Distance between \boldsymbol{x} and $\boldsymbol{\mu}$

Copyright © Andrew W. Moore

Evaluating $p(\mathbf{x})$: Step 4 $p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right)$ 1. Begin with vector \mathbf{x} 2. Define $\delta = \mathbf{x} - \mathbf{\mu}$ 3. Count the number of contours crossed of the ellipsoids formed $\mathbf{\Sigma}^{-1}$ $D = \text{this count} = \text{sqrt}(\delta^T \mathbf{\Sigma}^{-1} \delta)$ $= \text{Mahalonobis Distance between } \mathbf{x} \text{ and } \mathbf{\mu}$ 4. Define $\mathbf{w} = \exp(-D^2/2)$ $\mathbf{x} \text{ close to } \mathbf{\mu} \text{ in squared Mahalonobis space gets a large weight. Far away gets a tiny weight}$

Multivariate Gaussians

Write r.v.
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$$
 Then define $X \sim N(\mathbf{\mu}, \mathbf{\Sigma})$ to mean

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m}{2}} ||\mathbf{\Sigma}||^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Where the Gaussian's parameters have...

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{pmatrix} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma^2_1 & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{12} & \sigma^2_2 & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \cdots & \sigma^2_m \end{pmatrix}$$

Where we insist that Σ is symmetric non-negative definite

Again, $E[X] = \mu$ and $Cov[X] = \Sigma$. (Note that this is a resulting property of Gaussians, not a definition)

Copyright © Andrew W. Moore

$$\mathbf{p} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{pmatrix} \qquad \mathbf{\Sigma} = \begin{pmatrix} \sigma^2 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^2 & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^2 \end{pmatrix}$$

$$\mathbf{X}_i \perp \mathbf{X}_i \text{ for } i \neq j$$

$$\mathbf{X}_2$$

$$\mathbf{X}_1$$
Copyright © Andrew W. Moore

Where are we now?

- · We've seen the formulae for Gaussians
- We have an intuition of how they behave
- We have some experience of "reading" a Gaussian's covariance matrix
- Coming next:

Some useful tricks with Gaussians

Copyright © Andrew W. Moore

Slide 37

Subsets of variables

Write
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$$
 as $\mathbf{X} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix}$ where $\mathbf{V} = \begin{pmatrix} X_1 \\ \vdots \\ X_{m(u)} \end{pmatrix}$ $\mathbf{V} = \begin{pmatrix} X_{m(u)+1} \\ \vdots \\ X_m \end{pmatrix}$

This will be our standard notation for breaking an mdimensional distribution into subsets of variables

Copyright © Andrew W. Moore

Gaussian Marginals $\begin{pmatrix} U \\ V \end{pmatrix} \rightarrow \begin{pmatrix} Margin-l \\ alize \end{pmatrix} \rightarrow U$ are Gaussian

$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \longrightarrow \begin{matrix} \mathsf{Margin-} \\ \mathsf{alize} \end{matrix} \longrightarrow \mathbf{U}$$

Write
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$$
 as $\mathbf{X} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix}$ where $\mathbf{U} = \begin{pmatrix} X_1 \\ \vdots \\ X_{m(u)} \end{pmatrix}$, $\mathbf{V} = \begin{pmatrix} X_{m(u)+1} \\ \vdots \\ X_m \end{pmatrix}$

IF
$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} \begin{pmatrix} \mathbf{\mu}_{u} \\ \mathbf{\mu}_{v} \end{pmatrix}, \begin{pmatrix} \mathbf{\Sigma}_{uu} & \mathbf{\Sigma}_{uv} \\ \mathbf{\Sigma}_{uv}^{T} & \mathbf{\Sigma}_{vv} \end{pmatrix}$$

THEN U is also distributed as a Gaussian

$$\mathbf{U} \sim \mathbf{N}(\boldsymbol{\mu}_u, \boldsymbol{\Sigma}_{uu})$$

right © Andrew W. Moore

Slide 40

Gaussian Marginals $\begin{pmatrix} U \\ V \end{pmatrix} \rightarrow Marginalize \rightarrow U$ are Gaussian

$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \longrightarrow \begin{array}{c} \mathsf{Margin-} \\ \mathsf{alize} \end{array} \longrightarrow \mathbf{U}$$

Write
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$$
 as $\mathbf{X} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix}$ where $\mathbf{U} = \begin{pmatrix} X_1 \\ \vdots \\ X_{m(u)} \end{pmatrix}$, $\mathbf{V} = \begin{pmatrix} X_{m(u)+1} \\ \vdots \\ X_m \end{pmatrix}$

IF
$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} \mathbf{\mu}_{u} \\ \mathbf{\mu}_{v} \end{pmatrix}, \begin{pmatrix} \mathbf{\Sigma}_{uu} & \mathbf{\Sigma}_{uv} \\ \mathbf{\Sigma}_{uv}^{T} & \mathbf{\Sigma}_{vv} \end{pmatrix}$$

This fact is not immediately obvious

THEN U is also distributed as a Gaussian

Obvious, once we know it's a Gaussian (why?)

 $\mathbf{U} \sim \mathbf{N}(\boldsymbol{\mu}_u, \boldsymbol{\Sigma}_{uu})$

right © Andrew W. Moore

Gaussian Marginals are Gaussian $\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{Margin-alize} \end{pmatrix} \longrightarrow \mathbf{U}$ Write $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$ as $\mathbf{X} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix}$ where $\mathbf{U} = \begin{pmatrix} X_1 \\ \vdots \\ \mathbf{V} \end{pmatrix}$, $\mathbf{V} = \begin{pmatrix} X_{m(u)+1} \\ \vdots \\ \mathbf{How} \end{pmatrix}$ How would you prove this?

THEN U is also distributed as a Gaussian <

 $U \sim N(\mu_u, \Sigma_{uu})$

Copyright © Andrew W. Moore

Slide 41

Linear Transforms remain Gaussian

 $\int p(\mathbf{u}, \mathbf{v}) d\mathbf{v}$

Assume X is an m-dimensional Gaussian r.v.

$$X \sim N(\mu, \Sigma)$$

Define Y to be a p-dimensional r. v. thusly (note $p \le m$):

$$Y = AX$$

...where A is a p x m matrix. Then...

$$\mathbf{Y} \sim \mathbf{N}(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma} \mathbf{A}^T)$$

Note: the "subset" result is a special case of this result

Copyright © Andrew W. Moore

Adding samples of 2 independent Gaussians $X \rightarrow X+Y$

$$X \longrightarrow X + Y$$

if
$$X \sim N(\mu_x, \Sigma_x)$$
 and $Y \sim N(\mu_y, \Sigma_y)$ and $X \perp Y$

then
$$X + Y \sim N(\mu_x + \mu_y, \Sigma_x + \Sigma_y)$$

Why doesn't this hold if X and Y are dependent?

Which of the below statements is true?

If X and Y are dependent, then X+Y is Gaussian but possibly with some other covariance

If X and Y are dependent, then X+Y might be non-Gaussian

pyright © Andrew W. Moore

Conditional of Gaussian is Gaussian

IF
$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_{u} \\ \boldsymbol{\mu}_{v} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{uu} & \boldsymbol{\Sigma}_{uv} \\ \boldsymbol{\Sigma}_{uv}^{T} & \boldsymbol{\Sigma}_{vv} \end{pmatrix} \end{pmatrix}$$

THEN $\mathbf{U} \mid \mathbf{V} \sim \mathbf{N}(\boldsymbol{\mu}_{u|v}, \boldsymbol{\Sigma}_{u|v})$ where

$$\boldsymbol{\mu}_{u|v} = \boldsymbol{\mu}_u + \boldsymbol{\Sigma}_{uv}^T \boldsymbol{\Sigma}_{vv}^{-1} (\mathbf{V} - \boldsymbol{\mu}_v)$$

$$\Sigma_{uv} = \Sigma_{uv} - \Sigma_{vv}^T \Sigma_{vv}^{-1} \Sigma_{uv}$$

opyright © Andrew W. Moore

$$\begin{aligned} & \text{IF} \quad \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} \begin{pmatrix} \mathbf{\mu}_{u} \\ \mathbf{\mu}_{v} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{uu} & \boldsymbol{\Sigma}_{uv} \\ \boldsymbol{\Sigma}_{uv}^{T} & \boldsymbol{\Sigma}_{vv} \end{pmatrix} \end{pmatrix} & \text{IF} \quad \begin{pmatrix} \boldsymbol{w} \\ \boldsymbol{y} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} (2977) \\ 76 \end{pmatrix}, \begin{pmatrix} 849^{2} & -967 \\ -967 & 3.68^{2} \end{pmatrix} \end{pmatrix} \\ & \text{THEN} \quad \mathbf{U} \mid \mathbf{V} \sim \mathbf{N} \begin{pmatrix} \mathbf{\mu}_{u|v}, \boldsymbol{\Sigma}_{u|v} \end{pmatrix} \text{ where} & \text{THEN} \quad \boldsymbol{w} \mid \boldsymbol{y} \sim \mathbf{N} \begin{pmatrix} \mathbf{\mu}_{w|y}, \boldsymbol{\Sigma}_{w|y} \end{pmatrix} \text{ where} \\ & \boldsymbol{\mu}_{u|v} = \boldsymbol{\mu}_{u} + \boldsymbol{\Sigma}_{uv}^{T} \boldsymbol{\Sigma}_{vv}^{-1} (\mathbf{V} - \boldsymbol{\mu}_{v}) & \boldsymbol{\mu}_{w|y} = 2977 - \frac{976(\boldsymbol{y} - 76)}{3.68^{2}} \\ & \boldsymbol{\Sigma}_{u|v} = \boldsymbol{\Sigma}_{uu} - \boldsymbol{\Sigma}_{uv}^{T} \boldsymbol{\Sigma}_{vv}^{-1} \boldsymbol{\Sigma}_{uv} & \boldsymbol{\Sigma}_{w|y} = 849^{2} - \frac{967^{2}}{3.68^{2}} = 808^{2} \end{aligned}$$

Assume...

- · You are an intellectual snob
- · You have a child

Copyright © Andrew W. Moore

Intellectual snobs with children

- ...are obsessed with IQ
- In the world as a whole, IQs are drawn from a Gaussian N(100,15²)

IQ tests

- If you take an IQ test you'll get a score that, on average (over many tests) will be your IQ
- But because of noise on any one test the score will often be a few points lower or higher than your true IQ.

SCORE | $IQ \sim N(IQ, 10^2)$

Copyright © Andrew W. Moore

Assume...

- You drag your kid off to get tested
- She gets a score of 130
- "Yippee" you screech and start deciding how to casually refer to her membership of the top 2% of IQs in your Christmas newsletter.

 $P(X<130|\mu=100,\sigma^2=15^2) = \\ P(X<2|\mu=0,\sigma^2=1) = \\ erf(2) = 0.977$

pyright © Andrew W. Moore Slide 5

Maximum Likelihood IQ

- IQ~N(100,15²)
- $S|IQ \sim N(IQ, 10^2)$
- S=130

$$IQ^{mle} = \arg\max_{iq} p(s = 130 \mid iq)$$

- The MLE is the value of the hidden parameter that makes the observed data most likely
- · In this case

$$IQ^{mle} = 130$$

Copyright © Andrew W. Moore

Slide 55

BUT....

- IQ~N(100,15²)
- $S|IQ \sim N(IQ, 10^2)$
- S=130

$$IQ^{mle} = \arg\max_{iq} \ p(s = 130 \mid iq)$$

- The MLE is the value of the hidden parameter that makes the observed data most likely
- In this case

$$IO^{mle} = 130$$

This is **not** the same as "The most likely value of the parameter given the observed data"

Copyright © Andrew W. Moore

What we really want:

- IQ~N(100,15²)
- $S|IQ \sim N(IQ, 10^2)$
- S=130
- Question: What is IQ | (S=130)?

Copyright © Andrew W. Moore

Slide 57

Which tool or tools?

- IQ~N(100,15²)
- S|IQ ~ N(IQ, 10²)
- S=130
- Question: What is IQ | (S=130)?

Copyright © Andrew W. Moore

Plan

- IQ~N(100,15²)
- S|IQ ~ N(IQ, 10²)
- S=130
- Question: What is IQ | (S=130)?

Copyright © Andrew W. Moore

Slide 59

Working...

 $IQ \sim N(100, 15^2)$ $S|IQ \sim N(IQ, 10^2)$ S=130

Question: What is IQ | (S=130)?

IF
$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} \begin{pmatrix} \mathbf{\mu}_{u} \\ \mathbf{\mu}_{v} \end{pmatrix}, \begin{pmatrix} \mathbf{\Sigma}_{uu} & \mathbf{\Sigma}_{uv} \\ \mathbf{\Sigma}_{uv}^{T} & \mathbf{\Sigma}_{vv} \end{pmatrix}$$
 THEN
$$\mathbf{\mu}_{u|v} = \mathbf{\mu}_{u} + \mathbf{\Sigma}_{uv}^{T} \mathbf{\Sigma}_{vv}^{-1} (\mathbf{V} - \mathbf{\mu}_{v})$$

IF $\mathbf{U} | \mathbf{V} \sim \mathbf{N}(\mathbf{A}\mathbf{V}, \boldsymbol{\Sigma}_{u|v})$ and $\mathbf{V} \sim \mathbf{N}(\boldsymbol{\mu}_{v}, \boldsymbol{\Sigma}_{vv})$

THEN
$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \sim \mathbf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, with $\boldsymbol{\Sigma} = \begin{pmatrix} \mathbf{A} \boldsymbol{\Sigma}_{vv} \mathbf{A}^T + \boldsymbol{\Sigma}_{u|v} & \mathbf{A} \boldsymbol{\Sigma}_{vv} \\ (\mathbf{A} \boldsymbol{\Sigma}_{vv})^T & \boldsymbol{\Sigma}_{vv} \end{pmatrix}$

Copyright © Andrew W. Moore

Your pride and joy's posterior IQ

- If you did the working, you now have p(IQ|S=130)
- If you have to give the most likely IQ given the score you should give

$$IQ^{map} = \arg\max_{iq} p(iq \mid s = 130)$$

where MAP means "Maximum A-posteriori"

Copyright © Andrew W. Moor

Slide 61

What you should know

- The Gaussian PDF formula off by heart
- Understand the workings of the formula for a Gaussian
- Be able to understand the Gaussian tools described so far
- Have a rough idea of how you could prove them
- Be happy with how you could use them

Copyright © Andrew W. Moore