Note to other teachers and users of these slides.
Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free
to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If
you make use of a significant portion of these slides in
your own lecture, please include this message, or the
following link to the source repository of Andrew's
tutorials: http://www.cs.cmu.edu/~awm/tutorials .
Comments and corrections gratefully received.
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Gaussians in Data Mining

Why we should care

The entropy of a PDF
Univariate Gaussians
Multivariate Gaussians
Bayes Rule and Gaussians

Maximum Likelihood and MAP using
Gaussians
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Why we should care
e Gaussians are as natural as Orange Juice

and Sunshine

e We need them to understand Bayes Optimal

Classifiers

e We need them to understand regression
e We need them to understand neural nets
e \WWe need them to understand mixture

models
(You get the idea)
The “box” Lo xeX
. : p(x)=4" 2
distribution 0 if x>

1/w

-w/2
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The “box” 2t xIs Y
distribution 0 if Ixp

1/w

-w/2 0 w/2

2
w

E[X]ZO Var[X]ZE
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Entropy of a PDF

Entropy of X = H[X]=- Ip(x) log p(x)dx

dltural log (In or log,)

The larger the entropy of a distribution...
...the harder it is to predict
...the harder it is to compress it

...the less spiky the distribution
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The “box” " S xS
. . . px)=
distribution 0 if Ixp
1/w
-w/2 0 w/2
H[X]=- Tp(x)logp(x)dxz— Wf %Iog%dxz—%log% szdx=|ogw
Unit variance " % it Ixls Y
. . . plx)=
box distribution 0 if |xp
E[X]=0
1 2
243 Var[X]= =
12
_J3 . J3

if w=24/3 then Var[X]=1and H[X]=1.242
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The Hat {w—_lxl it <
p(x) = _

distribution 0 i s
E[X]=0

1 W2

w Var[X]=—
[X] 5

Unit variance hat {wlxl it x| <w
p(x)=

distribution 0 s w
E[X]=0
1 2
V6 Var[X] W
6
-6 0 J6

if w=+/6 then Var[X]=1and H[X]=1.396
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The “2 spikes”

Dirac Delta

_S(x=-1)+5(x=1)

) ] ) (x)
distribution 7 2
E[X]=0
. > 3(x=-1) %5(x=1) ]
2 — ] Var[x]=1
-1 1

H[X]=- Tp(x) log p(x)dx = —

X=—00

Copyright © Andrew W. Moore
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Entropies of unit-variance

distributions
Distribution Entropy
Box 1.242
Hat 1.396
2 spikes -infinity
277 1.4189<I Largest possible
entropy of any unit-
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Unit variance . r
| 1= oef 2]
Gaussian Vor 2
p(X) (35 E[X]=0
0.25 |
0.15 ] Var[X]=1
005 : : .
4 2 0 2 4
X

H[X]=- Tp(x) log p(x)dx =1.4189

X=—00
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General (e 1)?
. p(x)= eXp(_ 2 J
Gaussian Jore 20
p(x) 0.025 ;: 5]
0.015] E[X]=p
0005 7 >~ | Var[X]=0c"?
40 60 80 (100 120 140 160
X

)
n=100
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General

Also known
as the normal
distribution

1 (x—u)?
X) = exp| —
sha(;re(Bjecltrve p( ) hY 2ro p( 202
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Gaussian
7 [
p(x) 0.025 0:15|
0.015] \
0.005 |
40 60 80 £100 120 140 160
X
)
n=100

Shorthand: We say X ~ N(u,c?) to mean “X is distributed as a Gaussian
with parameters p and ¢2”.

In the above figure, X ~ N(100,15?)

E[X]=p

Var[X]=0o"

Slide 15
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Assume X ~

ERF(X)= .[p(z)dz PX) 0235

r——oo 0.15]|

1 . 5 0.05 | » >
z - o

=—— | exp|—— |dz =

— j_w p[ 2]

The Error Function

N(0,1)

Define ERF(x) = P(X<x) = Cumulative Distribution of X

0.25 | ‘

S-S

0.557]
o4

0.25

0.1
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Using The Error Function

Assume X ~ N(p,c?)

POX<X| w.0?) = ERF(

o

X—u
)

px) 0.0257]
0.015

0.005 |

40 60 80 100 120 140 160
b4

e
=1 =N
o.7F
055

[aRe 8

025

Yo (=Te) so oo “1zo 140 “dso
£
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The Central Limit Theorem

o If (X, X5, ...
variables

X,) are i.i.d. continuous random

1 n
e Then define Z:f(xl’XZ""xn):;in
i=1

e As n--=>infinity, p(z)--->Gaussian with mean
E[X;] and variance Var[X{]

Somewhat of a justification for assuming

Copyright © Andrew W. Moore

Gaussian noise is common
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Other amazing facts about
Gaussians

e Wouldn’t you like to know?

* \We will not examine them until we need to.

Copyright © Andrew W. Moore
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Bivariate Gaussians

. X
Write r.v. X :[Yj Then define X ~ N(u,X) to mean

p(x)= expl- 3 (x—p)” £ (x-p))

27| T2

Where the Gaussian’s parameters are...

78 o’ o,
’u}’ O-xy o y

Where we insist that X is symmetric non-negative definite

Copyright © Andrew W. Moore
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Bivariate Gaussians

. X
Write r.v. X :(Yj Then define X ~ N(p,XZ) to mean

p(x)= expl- 1 (x—p)’ (x-p))

27| T2

Where the Gaussian’s parameters are...

M o’ o,
H, o, O

Where we insist that X is symmetric non-negative definite

It turns out that E[X] = p and Cov[X] = X. (Note that this is a
resulting property of Gaussians, not a definition)*

*This note rates 7.4 on the pedanticness scale

Copyright © Andrew W. Moore
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Evaluating
p(x): Step 1 2r 21"

1. Begin with vector x

Copyright © Andrew W. Moore

p(x) = ——expl- L (x—p)” = x-p))
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Iiv;du;tmgz p(x)zﬁ;”%exp(_;(x_u)r £ (x—p))
P(X): Step g

1. Begin with vector x

2. Defined=x-p

e
1l
Evaluating Vet expl (xmw)” B x-mw)

P(
x): Step 3 2|z
p( ) p \ Contours defined by

sqrt(8=-18) = constant

1. Begin with vector x

2. Defined=x-p

3. Count the number of contours
crossed of the ellipsoids
formed -1

D = this count = sqrt(8'%18)
= Mahalonobis Distance
between x and p
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Evaluating
n(x): Step 4 2xl=l”

1. Begin with vector x

expl-2 (x-w)" £ (x-p))

2. Defined=x-p

3. Count the number of contours
crossed of the ellipsoids
formed X1

exp(-D2/2)

D = this count = sqrt(8'%15)
= Mahalonobis Distance
between x and p

4. Define w = exp(-D2/2)
. o

x close to u in squared Mahalonobis
space gets a large weight. Far away gets
a tiny weight
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P(Xx): Step 5 272"

1. Begin with vector x

Evaluating P00 expl- (x—)” 2 (x-m)

2. Defined=x-p

3. Count the number of contours
crossed of the ellipsoids
formed -1

exp(-D2/2)

D = this count = sqrt(8'%18)
= Mahalonobis Distance
between x and p
4. Define w = exp(-D 2/2)
5. 2
Multiply w by to ensurejp(x)dx =1

A
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density values 2.5e-005 <= density < 4¢-005

density <= 16-005

madelyear
3]

T T T T
2000 3000 4000 5000
weight

Observe: Mean, Principal axes,
implication of off-diagonal
covariance term, max gradient
zone of p(x)

Copyright © Andrew W. Moore

Example

mean cov
07T 86 T21485 -967 238
T597% -067 228 135609

modalyear

2000
weght

4000 5000

Common convention: show contour
corresponding to 2 standard
deviations from mean

Slide 27
density values: 0.0015 == density = 0.005 mean cay
density <= 0.0015 0.005 < density mpg 234458 60.9181 911551
accelaration . . acceleration 155413 9.11551 7.61133
737 X . acceleration ’
217 @ o0 AL 237 2 o
19 21
- | 197
i 17]
15 i
| * 15
13 4
| 13
™ 4
- 11 a5
9 R T T T T T T g ::
:n%g 1920 25 3035 40 45 10 15 20 25 30 35 40 45
mpg
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Example

density valles:

0.05 <= density < 0.11

density <=005 011 < density

me&n SOy
¥ -0.0579042 1.02654 0.0358283
vy -0.0308411 0.0358283 0.934203
Y

.

27 : ;

1] .

O_ +

17

27 .

T T T T T

In this example, x and y are almost independent

Copyright © Andrew W. Moore Slide 29
density valugs: 0.05 == density < 0.11 mean coy
density <= 005 0.11 < density ¥ -0.0579042 1.02654 1.06236
XY 52T ) ety -0.0885454 1.06236 2.0324
Y 35 '
2 5
. 2 |
05
| 05
-1
. -1 7.
=25
.o o 28] i
-4 T T T T o
2 = 0 1 1. .
e -4 T T T T
-2 =1 0 1
In this example, x and “x+y” are clearly not independent
Slide 30
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Example

density values: density <=0 0 < density mean cov
i 1 X -0.0579042 1.02654 20.5665
y+20¢ 50 “
L yr20x -1.18873 20,5665 412,982
1 4 y20x 50 e
€@ 4 i
P
g 30 4
10
| 10 |
-10
-10]
-307 ¢ |
& -30 =8
e »
502 T T T T T 50708 i
-2 -1 0 1 2 - R E D
& X

In this example, x and “20x+y” are clearly not independent

Copyright © Andrew W. Moore
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Multivariate Gaussians
Xl
. X,
Write rv. X =| Then define X ~ N(u,X) to mean
Xm
—_ 1 ( 1 T 2—1 )
p(x)= g P -5 (x—p) (x—p)
(27) 2 || 22
2
Where the Gaussian’s #h ot Uf " O
parameters have... = A{z s _| 0 02 = Oy,
/um Glm O-Zm sz
Where we insist that X is symmetric non-negative definite
Again, E[X] = p and Cov[X] = Z. (Note that this is a resulting property of Gaussians, not a definition)
Copyright © Andrew W. Moore Slide 32
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General Gaussians

2
H 01 O - Oy
2

Yz 2 O O 2 b o

p=|"0| E=| 7 2
e 2

'Ll m O-lm O-Zm O m

X2
Xy
Copyright © Andrew W. Moore Slide 33

Axis-Aligned Gaussians

ch 0 0 - 0 0

m 0 % 0 - 0 0

0 o0 % 0 0

p=| 2z DT 90 . .
u, 0 0 0 - o%i1 O

0 0 0 o

X, LX fori=j

N

Copyright © Andrew W. Moore Slide 34
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Spherical Gaussians

Hy
H
u = :

Mo

X, LX fori=j

X,

0
0

0 0 0 0
s> 0 - 0 0
0 o’ 0 0
0 0 c? 0
0 0 0 o’
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Hy
H
u = :
Hy,
X,

Degenerate Gaussians

IZ]=0

What's so wrong
with clipping
one’s toenails in
public?

Copyright © Andrew W. Moore
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Where are we now?

e \We've seen the formulae for Gaussians
e We have an intuition of how they behave

e We have some experience of “reading” a
Gaussian’s covariance matrix

e Coming next:

Copyright © Andrew W. Moore

Some useful tricks with Gaussians
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Subsets of variables

Xl
X, U=
. X U X
Write X =| % |as X = where )
: \4 m(u)+1
X v=|
X

m

This will be our standard notation for breaking an m-
dimensional distribution into subsets of variables

Copyright © Andrew W. Moore
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Gaussian Marginals (Uj_’ - I
are Gaussian v) e
Xl
Xl Xm(u)+l
. X, U .
Write X = : as X :(ijhere U= ,V = :
X X X,
e (V-GG 5
\4 n\x, X,
THEN U is also distributed as a Gaussian
U~N(g,.Z,)
Gaussian Marginals (UJ_» e
are Gaussian v) B
Xl
Xl Xm(u)+1
, X, U (
Write X = CjasX =(Vthere U= V= :
) X i X,

X

m

U uu Euu ZMV
IF ~N , .

V l‘l'v ZMV Evv
THEN U is also distributed as a Gaussian%

This fact is not
immediately obvious

U-~N(g,X,) ”’//’””J

Obvious, once we know
it's a Gaussian (why?)

Copyright © Andrew W. Moore
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Gaussian Marginals (UJ_’ —

. —U
- \Y4 alize
are Gaussian
Xl
X U Xl Xm(u)+l
- 2 . .
Write X =| . asX:(ijhere U= V= :
X, How would you prove
this?
U ll'u Zuu ZMV
IF ~N W oar
V llV ZMV ZVV
p(u)
THEN U is also distributed as a Gaussian = jp(u, v)dv
U~ N(HM,EW) = (snore...)
Matrix A

Linear Transforms

. . X — Multiply —AX
remain Gaussian

Assume X is an m-dimensional Gaussian r.v.
X~ N(g,x)
Define Y to be a p-dimensional r. v. thusly (note p <m):
Y = AX

...where A is a p x m matrix. Then...

T
Y ~ N(Ap,AZ A7)
Note: the “subset” result is
a special case of this result
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Adding samples of 2
independent Gaussians , _.

; ] X+Y
IS Gaussian Yy —

if X~N(u, X )andY~Np, X JandX LY
then X+Y ~N(p, +p, X +X))

Why doesn't this hold if X and Y are dependent?
Which of the below statements is true?

If X and Y are dependent, then X+Y is Gaussian but possibly
with some other covariance

If X and Y are dependent, then X+Y might be non-Gaussian

Copyright © Andrew W. Moore Slide 43

Conditional of (U}ww
Gaussian is Gaussian v/ 2=

U ll u E uu Z uv
I F [ ] -~ N (( j, [ T jJ density values 2.5¢-005 <= densily < 4¢-005
VvV n, 3 o Y . density <= 16-005
12-005 <= dansity < 2 Sa-005
maodalyear a1 : I-:'_ .“.“ -
THEN U|V~N(p,,.X,, where b W
a B
=R, + I E0(V-p,) e B
i Sl
Zulv — Zuu _ Zz‘)z;‘:}zuv W*I:;IL:IUJ 3000 4000 S000
Copyright © Andrew W. Moore Slide 44
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N REE)

"’u\v = p'u +ZT Z'7:|-(V _l‘l'v)

uv v

Z'u|v = Zuu - ngz;jzuv

2 2
() N[[(277) (8497 967
v 76 )\ -967 3.68

THEN U|V~N(g,, X, Jwhere THEN wly-~ N, Z,, )where

976(y — 76)

68°

s _gagr_ 37
3

B, = 2977 —

=808°

g2

wly

dersity values

2 Se-005 <= dendity < 4&-005

a1 .

797 i

g7 e e . ..

B T ..
o] ey . .
By

2000
weight

Copyright © Andrew W. Moore

5000 4000 5000
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U . Z. 2977 ( 849° -967
IF ( j~ N uu ’ L;‘u . IF (WJ~ N ( ], 2
A n)\x, X, y 76 ){-967 3.68
THEN U|V~N(g,, X, )where THEN w]y~ N{,, I, )where
976(y —76)
= »ryhy - o, =2977 ————+
"’u\v p’u + uv = vy (V p’v) u”‘," 3682
2
,=X,-ZLZ %, ):‘_:8492—967 =808?
ufv uu uv v uv wly 2
3.68
density values 2 Se-005 <= dendity < 4&-005
darr: noS
= e | Pewim=s2)
. ””|” - t.db”” -
S = P(w|m=76)
By :
'3UE|:| G000 4000 5000
weigh _
=== [ |rw
Copyright © Andrew W. Moore Slide 46
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PG B e

THEN U|V~N(g,, X, Jwhere T

w) (2977 ( 8492 —967}}

2
Note: when given value of
Vv is p,, the conditional
mean of u is p,

2977 —————

682

"’u\v = p'u +Euvzvv (V n, ) "’w\y =

Zu|v = E _Zuvzwlz

Note: marginal mean is
a linear function of v

oo o] ba e |
7/ F?“:i S ;ﬁﬁ/ Note: conditional (Wm=82)
l i 7] variance can only be
=] | equal to or smaller than | P(w|m=76)
| i === marginal variance
Note: conditional T 9

variance is independent | 1 —. .
of the given value of v | 712~ " "°

2000 3000 4000 5000

\\\\ P(w)

= ERE=TT= Sooo soo [ =Y=T=T=1

T weight

P e Mo -
o ooo==
- -1 —

o

.
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Let A be a constant matrix

IF U|V~N(AV,Z, Jand V~N(g,,X,)

THEN (3]~ N(p, X), with

Ap, AL A"+X, AL
l‘l = Z = T
R, (AZ,) X

vy

Copyright © Andrew W. Moore Slide 48
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Avalilable Gaussian tools

(Uj_> Margin=| | [$j~ N[(ﬁ]@ ED THEN U ~ N(u,.%,,)

alize

Matrix A
IFX~N(u,X) AND Y=AX THEN Y~ N(Ap,AZ AT
X Multiply —AX (.2) (A )

if X~ N(u,, =, )and Y~ N(u,, X, )and X L Y

X ’ then X+Y ~ N( X +X )y
X Y + llx+[ly, M 5
Y

IF [5]~N[["j(ir in THEN GV ~ N(w,,. 2,,,)
U} condition- U A

— :
\Y alize where w,, =p, +Z E(V-p,)

_ T -1
2"u|v - Zuu - Euvzvvzuv

U|V — |chain (Uj IF U|V~N(AV,Z, Jand V~N(g, X,)

v — Rule Vv AX A"+ I, AX,
(ax,)’ z,

THEN [3J~ N(n, X), with z=[

Copyright © Andrew W. Moore Slide 49

Assume...

e You are an intellectual snob
e You have a child

Copyright © Andrew W. Moore Slide 50
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Intellectual snobs with children

e ...are obsessed with 1Q

e In the world as a whole, 1Qs are drawn from
a Gaussian N(100,15%)

p(x) 0.025]

0.015 |

0.005 |

40 60 80 100 120 140 160

S|

lide 51

1Q tests

e If you take an IQ test you'll get a score that,
on average (over many tests) will be your
1Q

e But because of noise on any one test the
score will often be a few points lower or
higher than your true 1Q.

SCORE | 1Q ~ N(1Q,10%)

Slide 52

26



Assume...
e You drag your kid off to get tested
e She gets a score of 130

* “Yippee” you screech and start deciding how
to casually refer to her membership of the
top 2% of 10Qs in your Christmas newsletter.

p(x) 0.025]
0.015 |
0.005] . . : e : P(X<130|u=100,06°=15%) =
40 60 80 100 120 140 160
| — X _ P(X<2| u=0,6%=1) =
oo erf(2) = 0.977
Copyright © Andrew W. Moore Slide 53

e You drag your
e She gets a

You are thinking:

Well sure the test isn’t accurate, so

o “Yippee” she might have an IQ of 120 or she
to casually, — ok ikely 10 given the evidence
tOp 296 of “score=130" is, of course, 130. ter.
p(x) 0.025
0.015
0.005

=100,52=152) =
52=1) =

— e | P(X<13
40 60 80 100 120 140 160
X _ P(X<2]

o erf(2) =

Can we trust
this reasoning?

=N =0 =0 100 1To 140 1e0

Copyright © Andrew W. Moore Slide 54
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Maximum Likelihood 1Q

1Q~N(100,152)

S|1Q ~ N(IQ, 102)
S=130

10™ =arg max p(s =130|iq)

q

The MLE is the value of the hidden parameter that

makes the observed data most likely

Copyright © Andrew W. Moore

In this case

10" =130

Slide 55
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In this case

BUT....

1Q~N(100,152)
S|1Q ~ N(1Q, 102)
S=130

I0™ =arg max p(s =130|iq)

q

The MLE is the value of the hidden parameter that
makes the observed data most likely |

10™ =130

This is not the same as
“The most likely value of the
parameter given the observed
data”

Slide 56
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What we really want:

« 1Q~N(100,152)
- S|1Q ~ N(IQ, 102)
e S=130

e Question: What is
1Q | (5=130)?

Called the Posterior
Distribution of 1Q

Copyright © Andrew W. Moore
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Which tool or tools?

 1Q~N(100,152)
« S|1Q ~ N(IQ, 102
e S=130

e Question: What is
1Q | (§=130)?

Copyright © Andrew W. Moore

(Uj_ Mar_gin- U
\V4 alize

Matrix A
X Multiply —AX

U . Condition- U | vV

\V4 alize

U|V — |chain| _
Vv — | Rule

Slide 58
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Plan

1Q~N(100,152)
S|1Q ~ N(IQ, 102)
S=130

Question: What is
1Q | (5=130)?

S|IQ — |chain|_[ S _.[10) | condition-
Rule (IQ)‘ [ S alize _JQ | S

Q9 —

Sli

Copyright © Andrew W. Moore
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Working... |« [ 1)
\% p)\X, X,

1Q—N(100,152) —

S|1Q ~ N(IQ, 10?) n, =R, +X, X2 (V-n,)

S$=130
IF U|V~N(AV,Z, )and V~N(u,XZ,)

ion: i = ? T
Question: What is 1Q | (5=130)7 THEN (Uj~ N(u ), with £ — AL A"+X, AX
v (Az,)" =

Copyright © Andrew W. Moore

w
w
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Your pride and joy’s posterior 1Q

 If you did the working, you now have
p(1Q]|S=130)

e If you have to give the most likely 1Q given
the score you should give

10"" =argmax p(iqg | s =130)

q

 where MAP means “Maximum A-posteriori”

Slide 61

What you should know

e The Gaussian PDF formula off by heart

e Understand the workings of the formula for
a Gaussian

e Be able to understand the Gaussian tools
described so far

e Have a rough idea of how you could prove
them

e Be happy with how you could use them

Slide 62
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