Gaussians

Andrew W. Moore

Professor
School of Computer Science Carnegie Mellon University
www.cs.cmu.edu/~awm
awm@cs.cmu.edu 412-268-7599

Gaussians in Data Mining

- Why we should care
- The entropy of a PDF
- Univariate Gaussians
- Multivariate Gaussians
- Bayes Rule and Gaussians
- Maximum Likelihood and MAP using Gaussians

Why we should care

- Gaussians are as natural as Orange Juice and Sunshine
- We need them to understand Bayes Optimal Classifiers
- We need them to understand regression
- We need them to understand neural nets
- We need them to understand mixture models
- ...
(You get the idea)

Entropy of a PDF

Entropy of $X=H[X]=-\int_{x=-\infty}^{\infty} p(x) \log p(x) d x$

The larger the entropy of a distribution...
...the harder it is to predict
...the harder it is to compress it
...the less spiky the distribution

if $w=\sqrt{6}$ then $\operatorname{Var}[X]=1$ and $H[X]=1.396$

Entropies of unit-variance distributions

Distribution	Entropy
Box	1.242
Hat	1.396
2 spikes	-infinity
$? ? ?$	1.4189
Largest possible entropy of any unit variance distribution	

Unit variance Gaussian

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

$$
H[X]=-\int_{x=-\infty}^{\infty} p(x) \log p(x) d x=1.4189
$$

General
 Gaussian

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$E[X]=\mu$
$\operatorname{Var}[X]=\sigma^{2}$

Shorthand: We say $X \sim N\left(\mu, \sigma^{2}\right)$ to mean " X is distributed as a Gaussian with parameters μ and $\sigma^{2 \prime \prime}$.
In the above figure, $X \sim N\left(100,15^{2}\right)$

The Error Function

Assume $X \sim N(0,1)$
Define $\operatorname{ERF}(x)=P(X<x)=$ Cumulative Distribution of X

$$
\begin{aligned}
& \operatorname{ERF}(x)=\int_{z=-\infty}^{x} p(z) d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{z=-\infty}^{x} \exp \left(-\frac{z^{2}}{2}\right) d z
\end{aligned}
$$

Using The Error Function

Assume $X \sim N\left(\mu, \sigma^{2}\right)$
$\mathrm{P}\left(\mathrm{X}<\mathrm{x} \mid \mu, \sigma^{2}\right)=\operatorname{ERF}\left(\frac{x-\mu}{\sigma^{2}}\right)$

The Central Limit Theorem

- If $\left(X_{1}, X_{2}, \ldots X_{n}\right)$ are i.i.d. continuous random variables
- Then define $z=f\left(x_{1}, x_{2}, \ldots x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- As n-->infinity, p(z)--->Gaussian with mean $E\left[X_{i}\right]$ and variance $\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]$

Somewhat of a justification for assuming Gaussian noise is common

Other amazing facts about Gaussians

- Wouldn't you like to know?
- We will not examine them until we need to.

Bivariate Gaussians

Write r.v. $\mathbf{X}=\binom{X}{Y} \quad$ Then define $\quad X \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ to mean

$$
p(\mathbf{x})=\frac{1}{2 \pi\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

Where the Gaussian's parameters are...

$$
\boldsymbol{\mu}=\binom{\mu_{x}}{\mu_{y}} \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{x y} & \sigma^{2}
\end{array}\right)
$$

Where we insist that Σ is symmetric non-negative definite

Bivariate Gaussians

Write r.v. $\mathbf{X}=\binom{X}{Y} \quad$ Then define $\quad X \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ to mean

$$
p(\mathbf{x})=\frac{1}{2 \pi\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

Where the Gaussian's parameters are...

$$
\boldsymbol{\mu}=\binom{\mu_{x}}{\mu_{y}} \quad \boldsymbol{\Sigma}=\left(\begin{array}{ll}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y}^{2}
\end{array}\right)
$$

Where we insist that Σ is symmetric non-negative definite
It turns out that $\mathrm{E}[\mathrm{X}]=\mu$ and $\operatorname{Cov}[\mathrm{X}]=\boldsymbol{\Sigma}$. (Note that this is a resulting property of Gaussians, not a definition)*

Evaluating $p(\mathbf{x})$: Step 1
 $$
p(\mathbf{x})=\frac{1}{2 \pi\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

1. Begin with vector \mathbf{x}

$$
{ }^{x}
$$

- μ

Evaluating $p(\mathbf{x})$: Step 2
 $$
p(\mathbf{x})=\frac{1}{2 \pi\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

1. Begin with vector \mathbf{x}
2. Define $\delta=\mathbf{x}-\mu$

Evaluating

 $p(\mathbf{x})$: Step 31. Begin with vector \mathbf{x}
2. Define $\delta=\mathbf{x}-\mu$
3. Count the number of contours crossed of the ellipsoids formed Σ^{-1}
$D=$ this count $=\operatorname{sqrt}\left(\delta^{\top} \Sigma^{-1} \delta\right)$ = Mahalonobis Distance between \mathbf{x} and μ

$$
p(\mathbf{x})=\frac{1}{2 \pi\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$ $\operatorname{sqrt}\left(\delta^{\top} \Sigma^{-1} \delta\right)=\mathrm{constant}$

Evaluating $p(\mathbf{x})$: Step 4
 $$
p(\mathbf{x})=\frac{1}{2 \pi\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

1. Begin with vector \mathbf{x}
2. Define $\delta=\mathbf{x}-\boldsymbol{\mu}$
3. Count the number of contours crossed of the ellipsoids formed Σ^{-1}
$D=$ this count $=\operatorname{sqrt}\left(\delta^{\top} \Sigma^{-1} \delta\right)$ = Mahalonobis Distance between \mathbf{x} and μ
4. Define $w=\exp \left(-D^{2} / 2\right)$

Evaluating $p(\mathbf{x})$: Step 5
 $$
p(\mathbf{x})=\frac{1}{2 \pi\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

1. Begin with vector \mathbf{x}
2. Define $\delta=\mathbf{x}-\mu$
3. Count the number of contours crossed of the ellipsoids formed Σ^{-1}
$D=$ this count $=\operatorname{sqrt}\left(\delta^{\top} \Sigma^{-1} \delta\right)$ = Mahalonobis Distance between \mathbf{x} and μ
4. Define $w=\exp \left(-D^{2} / 2\right)$
5.

$$
\text { Multiply w by } \frac{1}{\sqrt{2 \pi}\|\boldsymbol{\Sigma}\|^{1 / 2}} \text { to ensure } \int p(\mathbf{x}) d \mathbf{x}=1
$$

Example

Observe: Mean, Principal axes, implication of off-diagonal covariance term, max gradient zone of $p(x)$

Common convention: show contour corresponding to 2 standard deviations from mean

Example

density values: $\quad 0.0015<=$ density <0.005
density $<=0.0015 \quad 0.005<$ density
acceleration

Example

In this example, x and y are almost independent

Example

In this example, x and " $\mathrm{x}+\mathrm{y}$ " are clearly not independent

In this example, x and " $20 x+y$ " are clearly not independent

Multivariate Gaussians

$$
\begin{aligned}
\text { Write r.v. } \mathbf{X} & =\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{m}
\end{array}\right) \quad \text { Then define } \quad X \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \text { to mean } \\
p(\mathbf{x}) & =\frac{1}{(2 \pi)^{m / 2}\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
\end{aligned}
$$

Where the Gaussian's parameters have...

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{m}
\end{array}\right) \quad \boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\
\sigma_{12} & \sigma^{2} & \cdots & \sigma_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2}
\end{array}\right)
$$

Where we insist that Σ is symmetric non-negative definite
Again, $\mathrm{E}[\mathrm{X}]=\mu$ and $\operatorname{Cov}[\mathrm{X}]=\boldsymbol{\Sigma}$. (Note that this is a resulting property of Gaussians, not a definition)

General Gaussians

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{m}
\end{array}\right) \quad \boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\
\sigma_{12} & \sigma^{2} & \cdots & \sigma_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}{ }_{m}
\end{array}\right)
$$

Axis-Aligned Gaussians

Spherical Gaussians

Degenerate Gaussians

$\boldsymbol{\mu}=\left(\begin{array}{c}\mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{m}\end{array}\right) \quad\|\boldsymbol{\Sigma}\|=0$

Where are we now?

- We've seen the formulae for Gaussians
- We have an intuition of how they behave
- We have some experience of "reading" a Gaussian's covariance matrix
- Coming next:

Some useful tricks with Gaussians

Subsets of variables

Write $\mathbf{X}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{m}\end{array}\right)$ as $\mathbf{X}=\binom{\mathbf{U}}{\mathbf{V}}$ where $\begin{array}{r}\mathbf{U}=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{m(u)}\end{array}\right) \\ \mathbf{V}=\left(\begin{array}{c}X_{m(u)+1} \\ \vdots \\ X_{m}\end{array}\right)\end{array}$

This will be our standard notation for breaking an mdimensional distribution into subsets of variables

Gaussian Marginals are Gaussian

Write $\mathbf{X}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{m}\end{array}\right)$ as $\mathbf{X}=\binom{\mathbf{U}}{\mathbf{V}}$ where $\mathbf{U}=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{m(u)}\end{array}\right), \mathbf{V}=\left(\begin{array}{c}X_{m(u)+1} \\ \vdots \\ X_{m}\end{array}\right)$
$\operatorname{IF}\binom{\mathbf{U}}{\mathbf{V}} \sim \mathrm{N}\left(\binom{\boldsymbol{\mu}_{u}}{\boldsymbol{\mu}_{v}},\left(\begin{array}{ll}\boldsymbol{\Sigma}_{u u} & \boldsymbol{\Sigma}_{u v} \\ \boldsymbol{\Sigma}_{u v}^{T} & \boldsymbol{\Sigma}_{v v}\end{array}\right)\right)$
THEN U is also distributed as a Gaussian
$\mathbf{U} \sim \mathrm{N}\left(\boldsymbol{\mu}_{u}, \boldsymbol{\Sigma}_{u u}\right)$

Gaussian Marginals are Gaussian

Write $\mathbf{X}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{m}\end{array}\right)$ as $\mathbf{X}=\binom{\mathbf{U}}{\mathbf{V}}$ where $\mathbf{U}=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{m(u)}\end{array}\right), \mathbf{V}=\left(\begin{array}{c}X_{m(u)+1} \\ \vdots \\ X_{m}\end{array}\right)$
$\operatorname{IF}\binom{\mathbf{U}}{\mathbf{V}} \sim \mathrm{N}\left(\binom{\boldsymbol{\mu}_{u}}{\boldsymbol{\mu}_{v}},\left(\begin{array}{ll}\boldsymbol{\Sigma}_{u u} & \boldsymbol{\Sigma}_{u v} \\ \boldsymbol{\Sigma}_{u v}^{T} & \boldsymbol{\Sigma}_{v v}\end{array}\right)\right)$
This fact is not immediately obvious
THEN U is also distributed as a Gaussian
$\mathbf{U} \sim \mathrm{N}\left(\boldsymbol{\mu}_{u}, \boldsymbol{\Sigma}_{u u}\right)$

> Obvious, once we know it's a Gaussian (why?)

Gaussian Marginals are Gaussian

Write $\mathbf{X}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{m}\end{array}\right)$ as $\mathbf{X}=\binom{\mathbf{U}}{\mathbf{V}}$ where $\mathbf{U}=\left(\begin{array}{c}X_{1} \\ \vdots \\ \hline\end{array}\right), \mathbf{V}=\left(\begin{array}{c}X_{m(u)+1} \\ \vdots \\ \vdots\end{array}\right), ~ H o w$ would you prove $) ~, ~$ this?
$\operatorname{IF} \quad\binom{\mathbf{U}}{\mathbf{V}} \sim \mathrm{N}\left(\binom{\boldsymbol{\mu}_{u}}{\boldsymbol{\mu}_{v}},\left(\begin{array}{cc}\boldsymbol{\Sigma}_{u u} & \boldsymbol{\Sigma}_{u v} \\ \boldsymbol{\Sigma}_{u v}^{T} & \boldsymbol{\Sigma}_{v v}\end{array}\right)\right)$

THEN U is also distributed as a Gaussian
$\mathbf{U} \sim \mathrm{N}\left(\boldsymbol{\mu}_{u}, \boldsymbol{\Sigma}_{u u}\right)$

$$
\begin{gathered}
p(\mathbf{u}) \\
=\int_{\mathbf{v}} p(\mathbf{u}, \mathbf{v}) d \mathbf{v} \\
=\quad(\text { snore...) }
\end{gathered}
$$

Linear Transforms
 remain Gaussian

Assume X is an m -dimensional Gaussian r.v.

$$
\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

Define Y to be a p-dimensional r. v. thusly (note $\quad p \leq m$):

$$
\mathbf{Y}=\mathbf{A X}
$$

...where A is a $\mathrm{p} \times \mathrm{m}$ matrix. Then...

$$
\mathbf{Y} \sim \mathrm{N}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T}\right)
$$

Note: the "subset" result is a special case of this result

Adding samples of 2 independent Gaussians is Gaussian

 if $\mathbf{X} \sim \mathrm{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right)$ and $\mathbf{Y} \sim \mathrm{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y}\right)$ and $\mathbf{X} \perp \mathbf{Y}$
 then $\mathbf{X}+\mathbf{Y} \sim \mathrm{N}\left(\boldsymbol{\mu}_{x}+\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{x}+\boldsymbol{\Sigma}_{y}\right)$

Why doesn't this hold if X and Y are dependent?
Which of the below statements is true?
If X and Y are dependent, then $X+Y$ is Gaussian but possibly with some other covariance

If X and Y are dependent, then $X+Y$ might be non-Gaussian

Conditional of Gaussian is Gaussian

$$
\operatorname{IF} \quad\binom{\mathbf{U}}{\mathbf{V}} \sim \mathrm{N}\left(\binom{\boldsymbol{\mu}_{u}}{\boldsymbol{\mu}_{v}},\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{u u} & \boldsymbol{\Sigma}_{u v} \\
\boldsymbol{\Sigma}_{u v}^{T} & \boldsymbol{\Sigma}_{v v}
\end{array}\right)\right)
$$

THEN $\mathbf{U} \mid \mathbf{V} \sim \mathrm{N}\left(\boldsymbol{\mu}_{u \mid v}, \boldsymbol{\Sigma}_{u \mid v}\right)$ where

$$
\begin{gathered}
\boldsymbol{\mu}_{u \mid v}=\boldsymbol{\mu}_{u}+\boldsymbol{\Sigma}_{u v}^{T} \boldsymbol{\Sigma}_{v v}^{-1}\left(\mathbf{V}-\boldsymbol{\mu}_{v}\right) \\
\boldsymbol{\Sigma}_{u \mid v}=\boldsymbol{\Sigma}_{u u}-\boldsymbol{\Sigma}_{u v}^{T} \boldsymbol{\Sigma}_{v v}^{-1} \boldsymbol{\Sigma}_{u v}
\end{gathered}
$$

$$
\operatorname{IF} \quad\binom{\mathbf{U}}{\mathbf{V}} \sim \mathrm{N}\left(\binom{\boldsymbol{\mu}_{u}}{\boldsymbol{\mu}_{v}},\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{u u} & \boldsymbol{\Sigma}_{u v} \\
\boldsymbol{\Sigma}_{u v}^{T} & \boldsymbol{\Sigma}_{v v}
\end{array}\right)\right) \quad \operatorname{IF} \quad\binom{w}{y} \sim \mathrm{~N}\left(\binom{2977}{76},\left(\begin{array}{cc}
849^{2} & -967 \\
-967 & 3.68^{2}
\end{array}\right)\right)
$$

THEN $\quad \mathbf{U} \mid \mathbf{V} \sim \mathrm{N}\left(\boldsymbol{\mu}_{u \mid v}, \boldsymbol{\Sigma}_{u \mid v}\right)$ where THEN $w \mid y \sim \mathrm{~N}\left(\boldsymbol{\mu}_{w \mid y}, \boldsymbol{\Sigma}_{w \mid y}\right)$ where

$$
\begin{aligned}
& \boldsymbol{\mu}_{u \mid v}=\boldsymbol{\mu}_{u}+\boldsymbol{\Sigma}_{u v}^{T} \boldsymbol{\Sigma}_{v v}^{-1}\left(\mathbf{V}-\boldsymbol{\mu}_{v}\right) \quad \boldsymbol{\mu}_{w \mid y}=2977-\frac{976(y-76)}{3.68^{2}} \\
& \boldsymbol{\Sigma}_{u \mid v}=\boldsymbol{\Sigma}_{u u}-\boldsymbol{\Sigma}_{u v}^{T} \boldsymbol{\Sigma}_{v v}^{-1} \boldsymbol{\Sigma}_{u v} \\
& \boldsymbol{\Sigma}_{w \mid y}=849^{2}-\frac{967^{2}}{3.68^{2}}=808^{2}
\end{aligned}
$$

Gaussians and the
 chain rule
 \[\underset{\mathbf{U} \mid \mathbf{V}}{\mathbf{V} \rightarrow $$
\begin{array}{c} \text { Chain } \\ \text { Rule } \end{array}
$$

 \rightarrow\binom{\mathbf{U}}{\mathbf{V}}\]}

Let A be a constant matrix
IF $\quad \mathbf{U} \mid \mathbf{V} \sim \mathrm{N}\left(\mathbf{A V}, \boldsymbol{\Sigma}_{u \mid v}\right)$ and $\mathbf{V} \sim \mathrm{N}\left(\boldsymbol{\mu}_{v}, \boldsymbol{\Sigma}_{v v}\right)$
THEN $\binom{\mathbf{U}}{\mathbf{V}} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with

$$
\boldsymbol{\mu}=\binom{\mathbf{A} \boldsymbol{\mu}_{v}}{\boldsymbol{\mu}_{v}} \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\mathbf{A} \boldsymbol{\Sigma}_{v v} \mathbf{A}^{T}+\boldsymbol{\Sigma}_{u \mid v} & \mathbf{A} \boldsymbol{\Sigma}_{v v} \\
\left(\mathbf{A} \boldsymbol{\Sigma}_{v v}\right)^{T} & \boldsymbol{\Sigma}_{v v}
\end{array}\right)
$$

Assume...

- You are an intellectual snob
- You have a child

Intellectual snobs with children

- ...are obsessed with IQ
- In the world as a whole, IQs are drawn from a Gaussian N(100,15²)

IQ tests

- If you take an IQ test you'll get a score that, on average (over many tests) will be your IQ
- But because of noise on any one test the score will often be a few points lower or higher than your true IQ.
SCORE | IQ ~N(IQ,102)

Assume...

- You drag your kid off to get tested
- She gets a score of 130
- "Yippee" you screech and start deciding how to casually refer to her membership of the top 2\% of IQs in your Christmas newsletter.

Assume...

- You drag your
- She gets a sa

You are thinking:

- "Yippee" $\begin{aligned} & \text { Well sure the test isn't accurate, so } \\ & \text { she might have an IQ of } 120 \text { or she }\end{aligned}$ to casually might have an $1 Q$ of 140 , but the most likely IQ given the evidence
top 2\% of "score=130" is, of course, 130.
ter.

Maximum Likelihood IQ

- IQ~N(100,15²)
- S|IQ ~ N(IQ, 10²)
- $\mathrm{S}=130$

$$
I Q^{m l e}=\underset{i q}{\arg \max } p(s=130 \mid i q)
$$

- The MLE is the value of the hidden parameter that makes the observed data most likely
- In this case

$$
I Q^{m l e}=130
$$

BUT....

- IQ~N(100,15²)
- SIIQ ~ N(IQ, $\left.10^{2}\right)$
- $\mathrm{S}=130$

$$
I Q^{m l e}=\underset{i q}{\arg \max } p(s=130 \mid i q)
$$

- The MLE is the value of the hidden parameter that makes the observed data most likely
- In this case

This is not the same as "The most likely value of the parameter given the observed

$$
I Q^{m l e}=130
$$

What we really want:

- IQ~N(100,15²)
- S|IQ ~N(IQ, $\left.10^{2}\right)$
- $\mathrm{S}=130$
- Question: What is IQ | (S=130)?

Which tool or tools?

- IQ~N(100,15²)
- SIIQ ~ N(IQ, $\left.10^{2}\right)$
- $\mathrm{S}=130$
- Question: What is IQ | (S=130)?

$$
\begin{gathered}
\mathbf{U} \mid \mathbf{V} \\
\mathbf{V}
\end{gathered} \rightarrow \begin{aligned}
& \text { Chain } \\
& \text { Rule }
\end{aligned} \rightarrow\binom{\mathbf{U}}{\mathbf{V}}
$$

Plan

- IQ~N(100,15²)
- SIIQ ~ N(IQ, $\left.10^{2}\right)$
- $\mathrm{S}=130$
- Question: What is

IQ | (S=130)?
$S \mid I \mathrm{Q} \rightarrow$
$I Q$$\rightarrow \begin{gathered}\text { Chain } \\ \text { Rule }\end{gathered} \rightarrow\binom{S}{I Q} \rightarrow$ Swap $\left.\rightarrow\binom{I Q}{S} \rightarrow \begin{gathered}\text { Condition- } \\ \text { alize }\end{gathered} \rightarrow I \mathrm{Q} \right\rvert\, S$

Your pride and joy's posterior IQ

- If you did the working, you now have $p(I Q \mid S=130)$
- If you have to give the most likely IQ given the score you should give

$$
I Q^{\operatorname{map}}=\underset{i q}{\arg \max } p(i q \mid s=130)
$$

- where MAP means "Maximum A-posteriori"

What you should know

- The Gaussian PDF formula off by heart
- Understand the workings of the formula for a Gaussian
- Be able to understand the Gaussian tools described so far
- Have a rough idea of how you could prove them
- Be happy with how you could use them

