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Unsupervised Learning

¢ You walk into a bar.
A stranger approaches and tells you:

“I've got data from k classes. Each class produces
observations with a normal distribution and variance
02l . Standard simple multivariate gaussian
assumptions. I can tell you all the P(w)’s .”

e So far, looks straightforward.
“I need a maximum likelihood estimate of the p/s ."

¢ No problem:
“There’s just one thing. None of the data are labeled. I

have datapoints, but I don't know what class they're
from (any of them!)

Uh oh!!
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Gaussian Bayes Classifier
Reminder

oty —i|x)~ LY =DP(y =)
p(X)

e -t on ) E )

Qo) 0L 2
p(x)

P(y =i|x)=

How do we deal with that?
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Predicting wealth from age
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Making a Classifier from a
Density Estimator

Copyright © 2001, 2004, Andrew W. Moore
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Next... back to Density Estimation

What if we want to do density estimation with
multimodal or clumpy data?

Aton’s Graghics G
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The GMM assumption

e There are k components. The
i'th component is called o,

e Component ; has an
associated mean vector y; \ o

o M3
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The GMM assumption

e There are k components. The
i'th component is called o,

e Component o, has an
associated mean vector y;

e Each component generates data

from a Gaussian with mean g,
and covariance matrix o2/

Assume that each datapoint is
generated according to the
following recipe:
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The GMM assumption

e There are k components. The
i‘th component is called «;

e Component ; has an
associated mean vector y;

e Each component generates data

from a Gaussian with mean
and covariance matrix o2/

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability Plw,).
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The GMM assumption

e There are k components. The
i'th component is called o,

e Component o, has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean g, X
and covariance matrix o2/

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability Plw,).

2. Datapoint ~ N(y, o?1)
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The General GMM assumption

e There are k components. The
i‘th component is called «;

e Component ; has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean g;
and covariance matrix %

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability Plw,).

2. Datapoint ~ N(x; %)
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Unsupervised Learning:
not as hard as it looks

b ... °
* o o o% -
. oo Sometimes easy
. IN CASE YOURE
v WONDERING WHAT
sose THESE DIAGRAMS ARE,
THEY SHOW 2-d
Se o o UNLABELED DATA (X
o e . : . . VECTORS)
e Sometimes impossible | /.27 5
< SPACE. THE TOP ONE
HAS THREE VERY
. - CLEAR GAUSSIAN
coele . CENTERS
Lo s and sometimes
.. . in between
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Computing likelihoods in
unsupervised case
We have x;, X, Xy

We know P(w,) P(w,) .. P(w,)
We know o

P(X|w;, w;, ... ) = Prob that an observation from class
w; would have value x given class
means p,... p,

Can we write an expression for that?

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 20
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likelihoods in unsupervised case

We have x; X, ... X,
We have P(w,) .. P(w,). We have o.
We can define, for any x, P(X|w;, n, ns.. pg)

Can we define P(X | py, ps.. pp) ?

Can we define P(X, Xz, .. X, | pppo.pp) ?

[YES, IF WE ASSUME THE X;'S WERE DRAWN INDEPENDENTLY]
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Unsupervised Learning:
Mediumly Good News

We now have a procedure s.t. if you give me a guess at p,, p, ..

I can tell you the prob of the unlabeled data given those W's.

Suppose x's are 1-dimensional. (From Duda and Hart)
There are two classes; w, and w,
Pw)=1/3 Pw,)=2/3 o=1.

There are 25 unlabeled datapoints

x; = 0.608 ‘Dm “Amsm

Xz=-1.590 L 1 Ll e L i )
X3= 0'235 f:fl-- N - II‘\ e N . .-- I‘ - ! e ‘- l‘
X;= 3.949

Xos= -0.712 - -2 o 2 &
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Duda & Hart's
Example

Graph of

log P(x, X5 .. Xo5 | Uy M)
against p, (=) and p,(1)

Max likelihood = (¢, =-2.13, p, =1.668)

Local minimum, but very close to global at (v, =2.085, p, =-1.257)*

* corresponds to switching w; + w,.
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s

Duda & Hart's

We can graph the

Example

prob. dist. function
of data given our
W;and p,
estimates.
[P
We can also graph the -~
true function from
which the data was
randomly generated.

Bl i—

a

e
e They are close. Good.

go, and vice versa.

The 2" solution tries to put the “2/3” hump where the “1/3"” hump should

In this example unsupervised is almost as good as supervised. If the x; ..

X,5 are given the class which was used to learn them, then the results are
(y,=-2.176, 1=1.684). Unsupervised got (/,=-2.13, 1/,=1.668).
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Finding the max likelihood p;,M,.

We can compute P( data | p,u.Hp)
How do we find the p;s which give max. likelihood?

e The normal max likelihood trick:
Set % logProb(...)=0
O,

and solve for y;s.

# Here you get non-linear non-analytically-
solvable equations

e Use gradient descent
Slow but doable

¢ Use a much faster, cuter, and recently very popular
method...

Copyright © 2001, 2004, Andrew W. Moore

Mk
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\ Expectation

Maximalization
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The E.M. Algorithm

o We'll get back to unsupervised learning soon.

e But now we'll look at an even simpler case with
hidden information.
e The EM algorithm

Can do trivial things, such as the contents of the next
few slides.

An excellent way of doing our unsupervised learning
problem, as we'll see.

Many, many other uses, including inference of Hidden
Markov Models (future lecture).
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Silly Example

Let events be “grades in a class”

w; = Getsan A P(A) = >
w, = Getsa B P(B) = M

w; =Getsa C P(C) = 2u
w, =Getsa D P(D) = ¥2-3

(Note 0 <pu<1/6)
Assume we want to estimate p from data. In a given class
there were
a A's
b B’s
c Cs
d D’s

What's the maximum likelihood estimate of y given a,b,c,d ?

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 28
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Silly Example

Let events be “grades in a class”

w, = Gets an A P(A) = >

w, =Getsa B P(B) =q
w;=Getsa C P(C) = 2u
w,=Getsa D P(D) = ¥2-3u

(Note 0<p<1/6)

Assume we want to estimate p from data. In a given class there were
a A’s
b B's
c Cs
d D’s

What's the maximum likelihood estimate of p given a,b,c,d ?
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Trivial Statistics
PAA)=% P(B)=p PC)=2u P(D)="-3y

P(abcd| p) = K(V2)2(u)A2p)(V2-3p)?
log P( a,6,cd| 1) = log K + dlog 2 + Hog p + dog 2 + dog (V2-31)

FOR MAX LIKE p, SET aLaogP =0
u
dlogp b, 2c 3d .
ou puo 2p 1/2-3p
Gives max like p = __b+c
6(b+c+d)
So if class got A B C D
14 6 9 10

1
Max like p = —
T

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 30
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Same Problem with Hidden Information

REMEMBER
Someone tells us that P(A) = 1

Number of High grades (A's + B's) = A P(B) = 1

Number of C's =c P(C) = 2p

Number of D’s =d P(D) = ¥2-3p

What is the max. like estimate of p now?
Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 31

Same Problem with Hidden Information

REMEMBER
Someone tells us that P(A) = 12
Number of High grades (A's + B's) = A P(B) =
Number of C's =c P(C) = 2u
Number of D’s =d P(D) = ¥2-3p

What is the max. like estimate of p now?
We can answer this question circularly:
| EXPECTATION |

If we know the value of p we could compute the
expected value of aand b %

n
Since the ratio a:b should be the same as the ratio %2 : n a= h b = h
| MAXIMIZATION |
If we know the expected values of aand b6 b
we could compute the maximum likelihood = __b+c
value of p 6(b+c+d)
Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 32
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REMEMBER

E.M. for our Trivial Problem -

We begin with a guess for p P(B) =
We iterate between EXPECTATION and MAXIMALIZATION to P(C) = 2u
improve our estimates of p and aand b. P(D) = ¥2-3p

Define p(t) the estimate of p on the t'th iteration
b(t) the estimate of b on t'th iteration
1(0) =initial guess

b(t)= 2N _ fp )]

Y u

_ b(t)+c
D= o) o)

= max like est of p given b(t)

Continue iterating until converged.
Good news: Converging to local optimum is assured.
Bad news: 1 said “local” optimum.
Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 33

E.M. Convergence

e Convergence proof based on fact that Prob(data | p) must increase or
remain same between each iteration (not osvious;

e Butit can never exceed 1  [osvious]
So it must therefore converge [osvious]

In our example, t H(t) b(t)
suppose we had olo 0
h= fg 1{0.0833 2.857
c =
d=10 2 |0.0937 3.158
IJ(O) =0 3 |0.0947 3.185
c _ i 4 10.0948 3.187
onvergence is generally linear: error
decreases by a constant factor each time > |0.0948 3.187
step. 6 | 0.0948 3.187
Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 34
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Back to Unsupervised Learning of
GMMs

We have unlabeled data x; X, ... Xz
We know there are k classes

We know P(w,) P(w,) P(ws) ... P(w,)
We don't know py 4, .. by

We can write P( data | p.... 1)
:p(xl...xR\ul...uk)

= ﬁip(xi Wi, ey )P(Wj)

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 35

E.M. for GMMs

For Max likelihood we know ai log Pr ob(data‘ TR )= 0

Some wild'n'crazy algebra turns this into : " For Max likelihood, for each j,

R
Z P(Wj ‘Xi s Hyee by ) X;

= ':IR See
P(Wj ‘Xi 5 ooy ) http://www.cs.cmu.edu/~awm/doc/gmm-algebra.pdf

i=1

This is n nonlinear equations in 's.”

If, for each x; we knew that for each w; the prob that p; was in class w; is
P(wy[x;H;..-H) Then... we would easily compute p;.

Cf we knew each ; then we could easily compute P(w;|x;H;...1) for e@

and x;.

...I feel an EM experience coming on!!

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 36
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E.M. for GMMs

Iterate. On the fth iteration let our estimates be

Ao = { 1), 1A®) .. () }

E-step
Compute “expected” classes of all datapoints for each class

Just evaluate
a Gaussian at
Xk

Kk [YVio i XkWi’ i(t)’ 21 p|(t)
)-SRl

P > plo, w1, 0. 71, 1)
M-step. j=l1

Compute Max. like p given our data’s class membership distributions
ZP(Wi‘XkB/lt)Xk
(t+1)=-%
“u( ) ZP(Wi‘Xkait)

k

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 37

E.M. '
Convergence

e Your lecturer will
(unless out of
time) give you a
nice intuitive
explanation of
why this rule
works.

e As with all EM

procedures, e This algorithm is REALLY USED. And
convergence to a in high dimensional state spaces, too.

local optimum E.G. Vector Quantization for Speech
guaranteed. Data

-] % ~& “5‘ —

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 38
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E.M. for General GMMs  |&maeor

. - . P(w;) on t'th
Iterate. On the fth iteration let our estimates be iteration

Ae = L1, AV ... L), 23(1), 20 ... 2), py(t), poAY) ... pAD) }

Just evaluate
a Gaussian at
Xk

E-step
Compute “expected” classes of all datapoints for each class

p(nfx,, 4 )= PO APOIA)_  plxw. 4(®).2,®)p.®

PUR) S oy 0., )0, 0
M-step. =

Compute Max. like p given our data’s class membership distributions
ZP(Wi‘Xk,ﬂT)Xk ( ZP(Wi‘XkJ't)[Xk _ﬂi(t+1)][xk _,ui(t"'l)]T
(t+1)= T (t+1)=-*
wilt+1) Pl A) > (w4,
k

+
k

ZP(Wi Xkﬂi()
pi(t+1):
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Gaussian
Mixture
Example:
Start

Advance apologies: in Black
and White this example will be
incomprehensible

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 40
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After first
iteration

Copyright © 2001, 2004, Andrew W. Moore
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After 2nd
iteration
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After 3rd
iteration

Copyright © 2001, 2004, Andrew W. Moore
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After 4th
iteration
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After 5th
iteration
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After 6th
iteration
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After 20th
iteration
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Some Bio . —
Assay e
data
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GMM
clustering
of the
assay data

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 49

Resulting
Density
Estimator
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Where are we now?

Inference
rEngine Learn

LU

P(E, [E,

Inputs

Joint DE, Bayes Net Structure Learning

Copyright © 2001, 2004, Andrew W. Moore

a Predict Dec Tree, Sigmoid Perceptron, Sigmoid N.Net,

S ags . . .

2—| Classifier — Gauss/Joint BC, Gauss Naive BC, N.Neigh, Bayes
S : Category | Net Based BC, Cascade Correlation

4"5’2 Density | _ Prob- Joint DE, Naive DE, Gauss/Joint DE, Gauss Naive
g.: Estimator ability DE, Bayes Net Structure Learning, GMMs

2% Predict | Linear Regression, Polynomial Regression,
glreal no. | Perceptron, Neural Net, N.Neigh, Kernel, LWR,

RBFs, Robust Regression, Cascade Correlation,
Regression Trees, GMDH, Multilinear Interp, MARS

Clustering with Gaussian Mixtures: Slide 51

The old trick...

Inference

- Engine Learn ¥ (E:1F2

Inputs
UL

Joint DE, Bayes Net Structure Learning

Copyright © 2001, 2004, Andrew W. Moore

o Predict Dec Tree, Sigmoid Perceptron, Sigmoid N.Net,

= s . . .

2+ Classifier | * Gauss/Joint BC, Gauss Naive BC, N.Neigh, Bayes
5: category | Net Based BC, Cascade Correlation, GMM-BCe
}gz Density R Prob- JDoEintB DE, lej'l'vteSI?E, tGaus|<::/Join_t DEéI\(/Elz;/lussy'Je
é;: Estimator ability , Bayes Net Structure Learning, S

bl Predict |Linear Regression, Polynomial Regression,
area| no. | Perceptron, Neural Net, N.Neigh, Kernel, LWR,
o . . .
—_ RBFs, Robust Regression, Cascade Correlation,

Regression Trees, GMDH, Multilinear Interp, MARS
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Compoured =
IL-1
THF

none

Three
classes of
assay

(each learned with
it's own mixture

model)

(Sorry, this will again be
semi-useless in black and
white)

mEeEmDHFRMRNED
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Compoutd =
IL-1
THF
jalelal=]

Resulting
Bayes
Classifier

mEeEm@FNMNED
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Compound =

Resulting Bayes L
Classifier, using none
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means
anomalous

Cyan means
ambiguous

Copyright © 2001, 2004, Andrew W. Moore
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Unsupervised learning with symbolic

attributes @

MARRIED

It's just a “learning Bayes net with known structure but

hidden values” problem.
Can use Gradient Descent.

EASY, fun exercise to do an EM formulation for this case too.

Copyright © 2001, 2004, Andrew W. Moore
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Final Comments

e Remember, E.M. can get stuck in local minima, and
empirically it DOES.

e Our unsupervised learning example assumed P(w,)’s
known, and variances fixed and known. Easy to
relax this.

e It's possible to do Bayesian unsupervised learning
instead of max. likelihood.

e There are other algorithms for unsupervised
learning. We'll visit K-means soon. Hierarchical
clustering is also interesting.

e Neural-net algorithms called “competitive learning”
turn out to have interesting parallels with the EM
method we saw.
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What you should know

e How to “learn” maximum likelihood parameters
(locally max. like.) in the case of unlabeled data.

e Be happy with this kind of probabilistic analysis.

e Understand the two examples of E.M. given in these
notes.

For more info, see Duda + Hart. It's a great book.
There’s much more in the book than in your
handout.
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Other unsupervised learning
methods

K-means (see next lecture)

Hierarchical clustering (e.g. Minimum spanning
trees) (see next lecture)
Principal Component Analysis

simple, useful tool

Non-linear PCA
Neural Auto-Associators
Locally weighted PCA
Others...
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