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Note to other teachers and users of these slides. Andrew would be delighted if you found this source 
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit 
your own needs. PowerPoint originals are available. If you make use of a significant portion of these 
slides in your own lecture, please include this message, or the following link to the source repository of 
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received. 
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Example Problems
Channel 
Routing

Lots of Chip Real-estate Same connectivity, 
much less space
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Example Problems
Also:

parking lot layout, 
product design, aero-
dynamic design, 
“Million Queens”
problem, radiotherapy 
treatment planning, …
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Informal characterization
These are problems in which…
• There is some combinatorial structure being optimized.
• There is a cost function:  Structure Real, to be 

optimized, or at least a reasonable solution is to be 
found.

• (So basic CSP methods only solve part of the problem 
… they satisfy constraints but don’t look for optimal 
constraint-satisfier.)

• Searching all possible structures is intractable.
• Depth first search approaches are too expensive.
• There’s no known algorithm for finding the optimal 

solution efficiently.
• Very informally, similar solutions have similar costs.
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Iterative Improvement
Intuition: consider the configurations to be laid out on the 
surface of a landscape.  We want to find the highest point.

(Unlike other AI search problems like 8-puzzle, we don’t 
care how we get there.)

“Iterative Improvement” methods:

Start at a random configuration; repeatedly consider 
various moves; accept some & reject some.  When you’re 
stuck, restart.

We must invent a moveset that describes what moves we 
will consider from any configuration.  Let’s invent movesets 
for out four sample problems.
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Hill-climbing
Hill-climbing:  Attempt to maximize Eval(X) by moving to 
the highest configuration in our moveset.  If they’re all 
lower, we are stuck at a “local optimum.”

1. Let X := initial config
2. Let E := Eval(X) 
3. Let N = moveset_size(X)
4. For ( i = 0 ; i<N ; i := i+1) 

Let Ei := Eval(move(X,i)) 
5. If all Ei’s are ≤ E, terminate, return X
6. Else let i* = argmaxi Ei
7. X := move(X,i*)
8. E := Ei*
9. Goto 3 (Not the most sophisticated algorithm in 

the world.)
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Hill-climbing Issues
• Trivial to program
• Requires no memory (since no backtracking)
• MoveSet design is critical.  This is the real ingenuity – not the 

decision to use hill-climbing.
• Evaluation function design often critical.

– Problems: dense local optima or plateaux
• If the number of moves is enormous, the algorithm may be 

inefficient.  What to do?
• If the number of moves is tiny, the algorithm can get stuck easily.  

What to do?
• It’s often cheaper to evaluate an incremental change of a previously 

evaluated object than to evaluate from scratch.  Does hill-climbing 
permit that?

• What if approximate evaluation is cheaper than accurate evaluation?
• Inner-loop optimization often possible.
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Randomized Hill-climbing
1. Let X := initial config
2. Let E := Eval(X) 
3. Let i = random move from the moveset
4. Let Ei := Eval(move(X,i))
5. If E < Ei then

X := move(X,i)
E := Ei

6. Goto 3 unless bored.

What stopping criterion should we use?

Any obvious pros or cons compared with our previous hill 
climber?
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Hill-climbing example: GSAT

WALKSAT (randomized GSAT):
Pick a random unsatisfied clause;
Consider 3 moves: flipping each variable.
If any improve Eval, accept the best.
If none improve Eval, then 50% of the time, pick the move that is the 
least bad; 50% of the time, pick a random one.

This is the best known algorithm for satisfying Boolean formulae! [Selman]
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Hill-climbing Example: TSP
Minimize: Eval(Config) = length of tour

MoveSet:  2-change … k-change
Example:  2-change
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3-change Example
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Hill-climbing Example: TSP
This class of algorithms for the TSP is usually referred to 
as k-opt

(MoveSet: 2-change, … k-change) for some constant k.

Lin showed empirically:
• 3-opt solutions are much better than 2-opt
• 4-opt solutions are not sufficiently better than 3-opt to justify the 

extra compute time
• A 3-opt tour for the  48-city problem of Held and Karp has about 

a probability of 0.05 of being optimal (100 random restarts will
yield the optimal solution with probability 0.99)

• Further for his particular class of TSP, a 3-opt tour is optimal with 
probability 2-n/10 where n is a number of cities.

There is no theoretical justification for any of these results.
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Simulated Annealing
1. Let X := initial config
2. Let E := Eval(X) 
3. Let i = random move from the 
moveset
4. Let Ei := Eval(move(X,i))
5. If E < Ei then

X := move(X,i)
E := Ei

Else with some probability, 
accept the move even though 
things get worse:

X := move(X,i)
E := Ei

6. Goto 3 unless bored.
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Simulated Annealing
1. Let X := initial config
2. Let E := Eval(X) 
3. Let i = random move from the 
moveset
4. Let Ei := Eval(move(X,i))
5. If E < Ei then

X := move(X,i)
E := Ei

Else with some probability, 
accept the move even though 
things get worse:

X := move(X,i)
E := Ei

6. Goto 3 unless bored.

This may make the search 
fall out of mediocre local 
minima and into better local 
maxima.

How should we choose the 
probability of accepting a 
worsening move?

• Idea One. Probability =  
0.1

• Idea Two. Probability 
decreases with time

• Idea Three. Probability 
decreases with time, and 
also as E – Ei increases.
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Simulated Annealing
If Ei >= E then definitely accept the change.
If Ei < E then accept the change with probability 

exp (-(E - Ei)/Ti)
(called the Boltzman distribution)

…where Ti is a “temperature” parameter that 
gradually decreases.  Typical cooling schedule:  
Ti = T0 · r’

High temp: accept all moves (Random Walk)
Low temp: Stochastic Hill-Climbing
When enough iterations have passed without improvement, 
terminate.

This idea was introduced by Metropolis in 1953.  It is “based” on “similarities”
and “analogies” with the way that alloys manage to find a nearly global minimum energy 
level when they are cooled slowly.
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Aside: Analogy-based algorithms
Your lecturer predicts that for any natural phenomenon you can think 
of, there will be at least one AI research group that will have a 
combinatorial optimization algorithm “based” on “analogies” and 
“similarities” with the phenomenon.  Here’s the beginning of the list…
• Metal cooling annealing
• Evolution / Co-evolution / Sexual Reproduction
• Thermodynamics
• Societal Markets
• Management Hierarchies
• Ant/Insect Colonies
• Immune System
• Animal Behavior Conditioning
• Neuron / Brain Models
• Hill-climbing (okay, that’s a stretch…)
• Particle Physics
• Inability of Elephants to Play Chess
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Simulated Annealing Issues
• MoveSet design is critical.  This is the real ingenuity –

not the decision to use simulated annealing.

• Evaluation function design often critical.

• Annealing schedule often critical.

• It’s often cheaper to evaluate an incremental change of a 
previously evaluated object than to evaluate from 
scratch.  Does simulated annealing permit that?

• What if approximate evaluation is cheaper than accurate 
evaluation?

• Inner-loop optimization often possible.
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Manhattan Channel Routing
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Channel Routing: Moveset
Simple moveset: pick up a wire and move it to another track at random.  
(Problem: almost all such moves are illegal!)
Fancy moveset: makes search more efficient

Draw vertical constraints in a 
graph (arrow means “must lie 
above”)

1 104

8

9 7

6

5

3

Packing wires onto the same track 
= = merging nodes.  (The graph 
must remain acyclic, and you must 
check horizontal constraints too.)

7

4,10

5

9

1,6,8
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Channel Routing: Cost Function
“Clearly, the objective function to be minimized is the channel width w.  
However, w is too crude a measure of the quality of intermediate 
solutions.  Instead, … the following cost function is used:”

c = w2 + λp · p2 + λu · u

where

p is a lower bound on the size of the constraint graph after future 
merge operations,

u measures the variance of how tightly the horizontal tracks are 
packed,

and λp and λu are hand-tweaked constants.
--- Wong, Simulated Annealing for VLSI Design



11

Slide 21

“Modified Lam” schedule

(This is just to give you and idea of how 
wacky these things can be.)

Idea:  dynamically lower and raise temp to 
meet a target accept rate over time.

Advantages:  few parameters to tweak; you 
know in advance how long the algorithm will 
run; works well empirically.

Slide 22

SA Discussion
Simulated annealing is sometimes empirically much better 
at avoiding local minima than hill-climbing.  It is a 
successful, frequently-used, algorithm.  Worth putting in 
your algorithmic toolbox.

Sadly, not much opportunity to say anything formal about it 
(though there is a proof that with an infinitely slow cooling 
rate, you’ll find the global optimum).

There are mountains of practical, and problem-specific, 
papers on improvements.
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Genetic Algorithms
In the basic GA, objects are coded up (carefully) as binary 
strings.  Goal is to optimize some function of the bit-strings.

(Diagram shamelessly 
copied from “Dean et al: AI: 
Theory and Practice”.)
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Genetic Algorithm
A set of bitstrings.  This set is called a Generation.  the algorithm 
produces a new generation from an old generation thusly:
• Let G be the current generation of N bitstrings.
• For each bitstring (call them b0, b1, … bN-1) define

pi = Eval(bi) / Σj Eval(bj).
• Let G’ be the next generation.  Begin with it empty.
• For k = 0 ; k < N/2 ; k = k+1

• Choose two parents each with probability
Prob(Parent = bi) = pi

• Randomly swap bits in the two parents to obtain two new bitstrings
• For each bit in turn in the new bitstring, randomly invert it with some low 

probability
• Add the two new bitstrings to G’

Let your first generation consist of random bitstrings.
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GA Issues
• Bitstring representation is critical.  This is the real ingenuity – not the 

decision to use genetic algorithms.  (How to encode TSP?)
• Evaluation function design often critical.  In-laws always critical.
• It’s often cheaper to evaluate an incremental change of a previously 

evaluated object than to evaluate from scratch.  Do Genetic 
Algorithms permit that?

• What if approximate evaluation is cheaper than accurate evaluation?
• Inner-loop optimization often possible.
Numerous twiddles:
• Use rankings not evaluations in creating your pi parent selection 

probabilities.
• Cross over contiguous chunks of the string instead of random bits?
• Needn’t be bit strings .. could use strings over other finite alphabets.
• Optimize over sentences from a grammar representing functions or

programs.  Called Genetic Programming.
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General Discussion
• Often, the “second best way” to solve a problem.
• But relatively easy to implement.  Can save a great deal 

of programming effort.
• But great care is needed in designing representations 

and movesets.  If someone tells you that SA/Hillclimbing 
solved their problem, that person is probably not giving 
enough credit to their own problem-formulation-ability.

• DON’T solve a problem with these methods that could 
be solved by Linear Programming, A-Star search or 
Constraint Propagation!

• What if evaluating the objective function is really 
expensive?
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What you should know about 
Iterative Improvement algs.

• Hill-climbing
• Simulated Annealing
• SAT and Channel Routing domains
• Given a simple problem (e.g. graph coloring from the CSP 

lectures) be able to give sensible suggestions as to how 
to code it up for the above algorithms.

References:
Simulated Annealing: See Numerical Recipes in C, or for practical details of Modified 
Lam schedule etc.: Ochotta 1994 Ph.D. thesis, CMU ECE.
Hillclimbing: Discussion in Russell and Norvig.
GSAT, WALKSAT: papers by Bart Selman and Henry Kautz (www.research.att.com)
Channel Routing: Wong et al., Simulated Annealing for VLSI Design, Kluwer 1988.


