
1

Copyright © 2001, 2005, Andrew W. Moore

Instance-based
learning

(a.k.a. memory-based) (a.k.a. non-
parametric regression) (a.k.a. case-

based) (a.k.a kernel-based)

Andrew W. Moore
Professor

School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of
these slides. Andrew would be
delighted if you found this source
material useful in giving your own
lectures. Feel free to use these slides
verbatim, or to modify them to fit your
own needs. PowerPoint originals are
available. If you make use of a
significant portion of these slides in
your own lecture, please include this
message, or the following link to the
source repository of Andrew’s tutorials:
http://www.cs.cmu.edu/~awm/tutorials
. Comments and corrections gratefully
received.

Software to play with the algorithms in
this tutorial, and example data are
available from:
http://www.cs.cmu.edu/~awm/vizier .
The example figures in this slide-set were
created with the same software and data.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 2

Overview
• What do we want a regressor to do?
• Why not stick with polynomial regression? Why not

just “join the dots”?
• What’s k-nearest-neighbor all about?
• And how about kernel regression, locally weighted

regression?
• Hmm. But what about multivariate fitting?
• And how do you compute all that stuff? And why

should I care?

2

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 3

This Tutorial’s Starting Point

Simple, uni-
variate case General, multi

variate case

We’ve obtained some
numeric data.

How do we exploit it?

......

......

......

0.5880-0.3394-0.73590.56690.8457-0.5682

0.77050.6493-0.5151-0.56900.87770.2668

0.51130.6237-0.54400.77180.77540.0332

-0.3367-0.8738-0.0768-0.66190.8105-0.1267

0.3098-0.80680.0385-0.0731-0.51430.4237

0.5753-0.4548-0.4510-0.26500.07450.7341

-0.6439-0.87390.60810.92540.6218-0.4627

-0.76230.0222-0.76480.0614-0.5975-0.2099

-0.6119-0.7267-0.1438-0.2459-0.53670.8622

-0.06470.6845-0.50870.6629-0.64880.3470

-0.95120.66200.83840.03570.3849-0.4788

GainSetptStage2WidthSpeedTemp

CoolCoolTempSlabLineSteel

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 4

Why not just use Linear Regression?

Bias: the underlying choice of model (in this case, a line) cannot, with
any choice of parameters (constant term and slope) and with any amount
of data (the dots) capture the full relationship.

Here, linear regression
may indeed be the right
thing.

Here, linear regression
appears to have a much
better fit, but the bias is
very clear.

Here, linear regression
manages to capture a
significant trend in the
data, but there is visual
evidence of bias.

Software and data for the algorithms in this tutorial: http://www.cs.cmu.edu/~awm/vizier . The
example figures in this slide-set were created with the same software and data.

3

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 5

Why not just Join the Dots?

Why is fitting the noise so bad?

Again, a clear case of
noise fitting.

Here, joining the dots
looks very sensible.

Here, joining the dots is
clearly fitting noise.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 6

Why not just Join the Dots?

Why is fitting the noise so bad?

Again, a clear case of
noise fitting.

Here, joining the dots
looks very sensible.

Here, joining the dots is
clearly fitting noise.

•You will tend to make somewhat bigger
prediction errors on new data than if you
filtered the noise perfectly.

•You don’t get good gradient estimates or
noise estimates.

•You can’t make sensible confidence intervals.
• It’s morally wrong.
•Also: Join the dots is much harder to
implement for multivariate inputs.

4

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 7

One-Nearest Neighbor
…One nearest neighbor for fitting is described shortly…

Similar to Join The Dots with two Pros and one Con.
• PRO: It is easy to implement with multivariate inputs.
• CON: It no longer interpolates locally.
• PRO: An excellent introduction to instance-based learning…

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 8

Univariate 1-Nearest Neighbor
Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume
yi=f(si) for some unknown function f.
Given query point xq, your job is to predict
Nearest Neighbor:
1. Find the closest xi in our set of datapoints

().qxfy
∧∧

=

() qi
i

xxnni −= argmin

()nniyy =
∧

2. Predict

Here’s a
dataset with
one input, one
output and
four
datapoints.

x
y

He
re

, t
his

 is

th
e

clo
se

st

da
ta

po
int

Here, this is
the closest
datapoint

He
re

, t
hi

s
is

th
e

clo
se

st

da
ta

po
in

t

Here
, t

his
 is

the
 cl

os
es

t

da
tap

oin
t

5

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 9

1-Nearest Neighbor is an example of….
Instance-based learning

Four things make a memory based learner:
• A distance metric
• How many nearby neighbors to look at?
• A weighting function (optional)
• How to fit with the local points?

x1 y1
x2 y2
x3 y3

.

.
xn yn

A function approximator
that has been around
since about 1910.

To make a prediction,
search database for
similar datapoints, and fit
with the local points.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 10

Nearest Neighbor
Four things make a memory based learner:
1. A distance metric

Euclidian
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the same output as the nearest
neighbor.

6

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 11

Multivariate Distance Metrics
Suppose the input vectors x1, x2, …xn are two dimensional:
x1 = (x11 , x12) , x2 = (x21 , x22) , …xN = (xN1 , xN2).
One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi1 – xj1)2+(3xi2 – 3xj2)2Dist(xi,xj) = (xi1 – xj1)2 + (xi2 – xj2)2

The relative scalings in the distance metric affect region shapes.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 12

Euclidean Distance Metric

Other Metrics…
• Mahalanobis, Rank-based, Correlation-based

(Stanfill+Waltz, Maes’ Ringo system…)

()

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∑

=

−=

∑

∑

2
N

2
2

2
1

22

σ00

0σ0
00σ

)x'-(x)x'-(x)x'(x,

')x'(x,

L

LLLL

L

L

T

i
iii

D

xxD σ

where

Or equivalently,

7

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 13

The Zen of Voronoi Diagrams
CNN Article

Mystery of renowned zen
garden revealed

Thursday, September 26, 2002 Posted: 10:11 AM
EDT (1411 GMT)

LONDON (Reuters) -- For centuries visitors to the
renowned Ryoanji Temple garden in Kyoto,
Japan have been entranced and mystified by
the simple arrangement of rocks.

The five sparse clusters on a rectangle of raked
gravel are said to be pleasing to the eyes of
the hundreds of thousands of tourists who visit
the garden each year.

Scientists in Japan said on Wednesday they now
believe they have discovered its mysterious
appeal.

"We have uncovered the implicit structure of the
Ryoanji garden's visual ground and have
shown that it includes an abstract, minimalist
depiction of natural scenery," said Gert Van
Tonder of Kyoto University.

The researchers discovered that the empty space of
the garden evokes a hidden image of a branching
tree that is sensed by the unconscious mind.

"We believe that the unconscious perception of this
pattern contributes to the enigmatic appeal of the
garden," Van Tonder added.

He and his colleagues believe that whoever created
the garden during the Muromachi era between
1333-1573 knew exactly what they were doing
and placed the rocks around the tree image.

By using a concept called medial-axis transformation,
the scientists showed that the hidden branched
tree converges on the main area from which the
garden is viewed.

The trunk leads to the prime viewing site in the
ancient temple that once overlooked the garden.

It is thought that abstract art may have a similar
impact.

"There is a growing realisation that scientific analysis
can reveal unexpected structural features hidden
in controversial abstract paintings," Van Tonder
said

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 14

Zen Part Two

(Photos and article extracted from www.cnn.com)

Question: what set of five rocks placed at a
distance would have not produced a tree-like
voronoi diagram?

8

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 15

Notable Distance Metrics

L 1
n

or
m

 (
ab

so
lu

te
)

L i
nf

in
it

y
(m

ax
)

no
rm

Sc
al

ed
 E

u
cl

id
ia

n
 (

L 2
)

M
ah

al
an

ob
is

(h

er
e,

 Σ
on

 t
h

e
pr

ev
io

u
s

sl
id

e
is

 n
ot

 n
ec

es
sa

ri
ly

di

ag
on

al
, b

u
t

is
 s

ym
m

et
ri

c

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 16

One-Nearest Neighbor

Objection:
That noise-fitting is really objectionable.
What’s the most obvious way of dealing with it?

..let’s leave distance metrics for now, and go back to….

9

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 17

k-Nearest Neighbor
Four things make a memory based learner:
1. A distance metric

Euclidian
2. How many nearby neighbors to look at?

k
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the average output among the k
nearest neighbors.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 18

k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but
there are clear deficiencies.
What can we do about all the discontinuities that k-NN gives us?

Fits much less of the noise,
captures trends. But still,
frankly, pathetic compared
with linear regression.

Appalling behavior! Loses
all the detail that join-
the-dots and 1-nearest-
neighbor gave us, yet
smears the ends.

A magnificent job of noise-
smoothing. Three cheers for
9-nearest-neighbor.
But the lack of gradients and
the jerkiness isn’t good.

10

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 19

Kernel Regression
Four things make a memory based learner:
1. A distance metric

Scaled Euclidian
2. How many nearby neighbors to look at?

All of them
3. A weighting function (optional)

wi = exp(-D(xi, query)2 / Kw
2)

Nearby points to the query are weighted strongly,
far points weakly. The KW parameter is the
Kernel Width. Very important.

4. How to fit with the local points?
Predict the weighted average of the outputs:
predict = Σwiyi / Σwi

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 20

Kernel Regression in Pictures

Take this
dataset…

..and do a kernel
prediction with xq
(query) = 310,
Kw = 50.

11

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 21

Varying the Query

xq = 150 xq = 395

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 22

Varying the kernel width

Increasing the kernel width Kw means further away points get an
opportunity to influence you.
As Kw infinity, the prediction tends to the global average.

xq = 310 (the
same)
KW = 150

xq = 310 (the
same)
KW = 100

xq = 310
KW = 50 (see the
double arrow at top of
diagram)

12

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 23

Kernel Regression Predictions

Increasing the kernel width Kw means further away
points get an opportunity to influence you.
As Kw infinity, the prediction tends to the global average.

KW=80KW=20KW=10

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 24

Kernel Regression on our test cases

KW=1/16 axis width.
Nice and smooth, but
are the bumps
justified, or is this
overfitting?

KW=1/32 of x-axis width.
Quite splendid. Well done,
kernel regression. The
author needed to choose
the right KW to achieve this.

KW=1/32 of x-axis width.
It’s nice to see a smooth
curve at last. But rather
bumpy. If Kw gets any
higher, the fit is poor.

Choosing a good Kw is important. Not just for Kernel Regression, but
for all the locally weighted learners we’re about to see.

Software and data for the algorithms in this tutorial: http://www.cs.cmu.edu/~awm/vizier . The
example figures in this slide-set were created with the same software and data.

13

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 25

Weighting functions

Let

d=D(xi,xquery)/KW

Then here are some
commonly used
weighting functions…

(we use a Gaussian)

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 26

Weighting functions

Let

d=D(xi,xquery)/KW

Then here are some
commonly used
weighting functions…

(we use a Gaussian)

Newsflash:

The word on the street from
recent non-parametric
statistics papers is that the
precise choice of kernel shape
doesn’t matter much.

14

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 27

Kernel Regression can look bad

KW = Best.

Three noisy linear
segments. But best
kernel regression gives
poor gradients.

KW = Best.

Also much too local.
Why wouldn’t
increasing Kw help?
Because then it would
all be “smeared”.

KW = Best.

Clearly not capturing
the simple structure of
the data.. Note the
complete failure to
extrapolate at edges.

Time to try something more powerful…

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 28

Locally Weighted
Regression

Kernel Regression:
Take a very very conservative function
approximator called AVERAGING. Locally
weight it.

Locally Weighted Regression:
Take a conservative function approximator
called LINEAR REGRESSION. Locally weight it.

Let’s Review Linear Regression….

15

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 29

Unweighted Linear Regression
You’re lying asleep in bed. Then Nature wakes you.

YOU: “Oh. Hello, Nature!”

NATURE: “I have a coefficient β in mind. I took a bunch of
real numbers called x1, x2 ..xN thus: x1=3.1,x2=2, …xN=4.5.

For each of them (k=1,2,..N), I generated yk= βxk+εk

where εk is a Gaussian (i.e. Normal) random variable with
mean 0 and standard deviation σ. The εk’s were generated
independently of each other.

Here are the resulting yi’s: y1=5.1 , y2=4.2 , …yN=10.2”

You: “Uh-huh.”

Nature: “So what do you reckon β is then, eh?”

WHAT IS YOUR RESPONSE?

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 30

Global Linear Regression: yk=βxk +εk

Which value of β makes the y1, y2..yN values most likely?

()

() ()

() ()∏
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

N

k

kk
NN

kk
k

kk

xyKxxxyyy

xyKxy

σxxy

1
2

2

2121

2

2

k

k

2
βexpβ,,...,,,...,prob

2
βexp β,prob

 dev. std. ,βmean Gaussian, ~ β,prob

σ

σ

()

()

()

()∑ −=

∑ −−=

=

=

=

=

∧

N

k
kk

N

k
kk

NN

NN

xy

xyKN

xxxyyy

xxxyyy

1

2

1

2
2

2121

2121

β
β
minarg

β
2

1log
β
maxarg

β,,...,,,...,prob log
β
maxarg

β,,...,,,...,prob
β
maxarg

β

σ

16

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 31

Least squares unweighted linear regression

() () ()

()

()

()

∑⎟
⎠
⎞⎜

⎝
⎛∑=

∑∑ +−=
∂
∂

=

=
∂
∂

=∑ −=

−

k
kk

k
k

k
k

k
kk

k
kk

yxx

xyxE

E

E

ExyE

1
2

2

2

β̂

giving

β22β
β

0

so

0β
β

set ,β minimize To

β
β
minarg

β̂ so ,ββ Write

E(β) β

E(β)=
sum of squares of
green line lengths← 1 →

↑
β
↓

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 32

Multivariate unweighted linear regression
Nature supplies N input vectors. Each input vector xk
is D-dimensional: xk = (xk1, xk2 .. xkD) . Nature also supplies N
corresponding output values y1 .. yN.

k

D

j
kjjk

NNDNN

D

D

xy

y

y
y

Y

xxx

xxx
xxx

X εβ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= ∑
=1

2

1

21

22221

11211

 toldare we
:

:::

L

L

L

() YXXX TT 1−∧

=β

() () ∑∑
==

==
N

k
ikii

T
N

k
kjkiij

T yxYXxxXX
11

We must estimate β = (β1, β2 … βD). It’s easily shown using matrices
instead of scalars on the previous slide that

Note that XTX is a D x D positive definite symmetric matrix, and XTY is a
D x 1 vector:

17

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 33

The Pesky Constant Term

k

D

j
kjjk xy εββ

1
0 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ND

D

D

NNNDNN

D

D

x

x
x

xx

xx
xx

xxx

xxx
xxx

:

1
:::

1
1

:::
2

1

21

2221

1211

21

22221

11211

L

L

L

L

L

L

Now: Nature doesn’t guarantee that the line/hyperplane passes
through the origin.

In other words: Nature says

“No problem,” you reply. “Just add one extra input variable, xk0, which is
always 1”

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 34

Locally Weighted Regression
Four things make a memory-based learner:
1. A distance metric

Scaled Euclidian
2. How many nearby neighbors to look at?

All of them
3. A weighting function (optional)

wk = exp(-D(xk, xquery)2 / Kw
2)

Nearby points to the query are weighted strongly, far points
weakly. The Kw parameter is the Kernel Width.

4. How to fit with the local points?
First form a local linear model. Find the β that minimizes the
locally weighted sum of squared residuals:

()
2

1

2

β

xβyβ argmin∑
=

∧

−=
N

k
k

T
kkw Then predict ypredict=βT xquery

18

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 35

How LWR works

1. For each point (xk,yk) compute wk.
2. Let WX = Diag(w1,..wN)X

X - - > WX

3. Let WY=Diag(w1,..wN)Y, so that yk
wkyk

4. β = (WXTWX)-1(WXTWY)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

NDN

D

D

NNNNNNDNN

D

D

xw

xw
xw

xwxww

xwxww
xwxww

xxx

xxx
xxx

:

::::::
22

11

21

2222122

1211111

21

22221

11211

L

L

L

L

L

L

Linear regression not
flexible but trains like
lightning.

Locally weighted regression is
very flexible and fast to train.

Query

Find w to minimize
Σ(yi-ΣwjTj(xi))2

directly: w=(XTX)-1XTY

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 36

Input X matrix of inputs: X[k] [i] = i’th component of k’th input point.
Input Y matrix of outputs: Y[k] = k’th output value.
Input xq = query input. Input kwidth.

WXTWX = empty (D+1) x (D+1) matrix
WXTWY = empty (D+1) x 1 matrix

for (k = 1 ; k <= N ; k = k + 1)
/* Compute weight of kth point */
wk = weight_function(distance(xq , X[k]) / kwidth)

/* Add to (WX) ^T (WX) matrix */
for (i = 0 ; i <= D ; i = i + 1)

for (j = 0 ; j <= D ; j = j + 1)
if (i == 0) xki = 1 else xki = X[k] [i]
if (j == 0) xkj = 1 else xkj = X[k] [j]
WXTWX [i] [j] = WXTWX [i] [j] + wk * wk * xki * xkj

/* Add to (WX) ^T (WY) vector */
for (i = 0 ; i <= D ; i = i + 1)

if (i == 0) xki = 1 else xki = X[k] [i]
WXTWY [i] = WXTWY [i] + wk * wk * xki * Y[k]

/* Compute the local beta. Call your favorite linear equation solver. Recommend Cholesky
Decomposition for speed. Recommend Singular Val Decomp for Robustness. */

beta = (WXTWX)-1 (WXTWY)
ypredict = beta[0] + beta[1]*xq[1] + beta[2]*xq[2] + … beta[D]*xq[D]

19

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 37

LWR on our test cases

KW = 1/8 of x-axis
width.

Nicer and smoother,
but even now, are
the bumps justified,
or is this overfitting?

KW = 1/32 of x-axis
width.

KW = 1/16 of x-axis
width.

Software and data for the algorithms in this tutorial: http://www.cs.cmu.edu/~awm/vizier . The
example figures in this slide-set were created with the same software and data.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 38

Locally weighted Polynomial regression

LW Quadratic Regression
Kernel width KW at
optimal level.

KW = 1/15 x-axis

LW Linear Regression
Kernel width KW at
optimal level.

KW = 1/40 x-axis

Kernel Regression
Kernel width KW at
optimal level.

KW = 1/100 x-axis

Local quadratic regression is easy: just add quadratic terms to the
WXTWX matrix. As the regression degree increases, the kernel width
can increase without introducing bias.

Software and data for the algorithms in this tutorial: http://www.cs.cmu.edu/~awm/vizier . The
example figures in this slide-set were created with the same software and data.

20

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 39

When’s Quadratic better than Linear?
• It can let you use a wider kernel without introducing bias.
• Sometimes you want more than a prediction, you want an

estimate of the local Hessian. Then quadratic is your friend!
• But in higher dimensions is appallingly expensive, and needs a

lot of data. (Why?)
• Two “Part-way-between-linear-and-quadratic” polynomials:

• “Ellipses”: Add xi
2 terms to the model, but not cross-terms

(no xixj where i=j)
• “Circles”: Add only one extra term to the model:

• Incremental insertion of polynomial terms is well established in
conventional regression (GMDH,AIM): potentially useful here too

∑
=

+ =
D

j
jD xx

1

2
1

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 40

Multivariate Locally weighted learning

All the methods described so far can generalize to
multivariate input and output. But new questions arise:

What are good scalings for a Euclidean distance metric?
What is a better Euclidean distance metric?
Are all features relevant?
Do some features have a global rather than local influence?

In
pu

ts

O
u

tp
u

tsLocally
Weighted
Learner

21

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 41

A Bivariate Fit Example
LWQ Regression

Let’s graph the prediction
surface given 100 noisy
datapoints: each with 2
inputs, one output
Kernel Width, Number of fully
weighted Neighbors, Distance
Metric Scales all optimized.
Kw = 1/16 axis width
4 nearest neighs full weight
Distance metric scales each axis
equally.

f(x,y) = sin(x) + sin(y) +
noise

Software and data for the algorithms in
this tutorial:
http://www.cs.cmu.edu/~awm/vizier . The
example figures in this slide-set were
created with the same software and data.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 42

Two more bivariate fits
Locally weighted linear regression.
KW, num neighs, metric scales all
optimized.
KW=1/50 x-axis width. No
neighbors fully weighted. y not
included in distance metric, but is
included in the regression.
f(x,y) = sin(x*x)+y+noise

Kernel Regression.

KW, num neighs, metric scales all
optimized.

KW=1/100 x-axis width. 1-NN fully
weighted. y not included in
distance metric.

f(x,y) = sin(x*x)

22

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 43

Fabricated Example
f(x1,x2,x3,x4,x5,x6,x7,x8,x9) = noise + x2 + x4 + 4sin(0.3x6 + 0.3x8).
(Here we see the result of searching for the best metric, feature set, kernel width,
polynomial type for a set of 300 examples generated from the above function)

Recommendation.

Based on the search results so far, the recommended function approximator
encoding is L20:SN:-0-0-9-9. Let me explain the meaning:

Locally weighted regression. The following features define the distance metric:
x6 (full strength).
x8 (full strength).

A gaussian weighting function is used with kernel width 0.0441942 in scaled
input space. We do a weighted least squares with the following terms:

Term 0 = 1
Term 1 = x2/10
Term 2 = x4/10
Term 3 = x6/10
Term 4 = x8/10

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 44

Locally Weighted Learning: Variants
• Range Searching: Average of all neighbors within a given

range
• Range-based linear regression: Linear regression on all

points within a given range
• Linear Regression on K-nearest-neighbors
• Weighting functions that decay to zero at the kth nearest

neighbor
• Locally weighted Iteratively Reweighted Least Squares
• Locally weighted Logistic Regression
• Locally weighted classifiers

• Multilinear Interpolation
• Kuhn-Triangulation-based Interpolation
• Spline Smoothers

23

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 45

Using Locally Weighted Learning for
Modeling

• “Hands-off” non-parametric relation finding
• Low Dimensional Supervised Learning
• Complex Function of a subset of inputs
• Simple function of most inputs but complex

function of a few
• Complex function of a few features of many

input variables

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 46

Use (1): “Hands-off” non-parametric relation
finding.

You run an HMO (or a steel tempering process) (or a 7-dof dynamic robot arm)

You want an intelligent assistant to spot patterns and regularities among pairs or
triplets of variables in your database…

….….….

ThrustRateCoolTunn2 TempZip Median Age

FlightTimeCoolTunn5 SepPatient ZIP

LaserHeightCoolTunn2 SetpMortality/100

SonarHeightSlab Temp Stg2Market Share

DDPitchSlab Temp Stg1ICD-9 Diagnosis

DPitchSlab heightDischarges/100

PitchSlab widthCharge/Discharge

DDRollLine Spd -20minsCharge/Day

DRollLine Spd -10minsPatient Age

RollLine SpeedPhysician Age

Robot Variables:Steel Variables:HMO variables:

You especially want to find more than just the linear correlations….

24

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 47

Use (2): Low Dimensional Supervised Learning

Examples:
• Skin Thickness vs τ,φ for face scanner
• Topographical Map
• Tumor density vs (x,y,z)
• Mean wasted Aspirin vs (fill-target, mean-weight, weight-sdev, rate) for an

aspirin-bottle filler
• Object-ball collision-point vs (x,y,θ) in Pool

You have lots of data, not many input variables (less than 7, say) and
you expect a very complex non-linear function of the data.

In
pu

ts

O
u

tp
u

ts

Function
Approximator

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 48

Use (3): Complex Function of a subset of inputs

25

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 49

Use (4): Simple function of most inputs but complex
function of a few.

Examples:
• f(x) = x1 + 3x2 – x4 + sin(log(x5)*x6) – x7

2 + x8 – x9 + 8x10

• Car Engine Emissions

• Food Cooling Tunnel

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 50

Use (5): Complex function of a few features of
many input variables.

Examples:
• Mapping from acoustic signals to “Probability of Machine

Breakdown”.
• Time series data analysis.
• Mapping from Images to classifications.

Im
ag

e
P

ix
el

s

P
re

pr
oc

es
so

r

Fu
n

ct
io

n

A
pp

ro
xi

m
at

or

O
u

tp
u

ts

• (e.g. Product inspection, Medical imagery, Thin Film imaging..)

26

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 51

Local Weighted Learning: Pros & Cons vs Neural Nets

Local weighted learning has some advantages:
• Can fit low dimensional, very complex, functions very accurately. Neural

nets require considerable tweaking to do this.
• You can get meaningful confidence intervals, local gradients back, not

merely a prediction.
• Training, adding new data, is almost free.
• “One-shot” learning---not incremental
• Variable resolution.
• Doesn’t forget old training data unless statistics warrant.
• Cross-validation is cheap

Neural Nets have some advantages:
• With large datasets, MBL predictions are slow (although kdtree

approximations, and newer cache approximations help a lot).
• Neural nets can be trained directly on problems with hundreds or

thousands of inputs (e.g. from images). MBL would need someone to
define a smaller set of image features instead.

• Nets learn incrementally.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 52

What we have covered
• Problems of bias for unweighted regression, and noise-

fitting for “join the dots” methods
• Nearest Neighbor and k-nearest neighbor
• Distance Metrics
• Kernel Regression
• Weighting functions
• Stable kernel regression
• Review of unweighted linear regression
• Locally weighted regression: concept and implementation
• Multivariate Issues
• Other Locally Weighted variants
• Where to use locally weighted learning for modeling?
• Locally weighted pros and cons

