
1

Copyright © 2001, 2005, Andrew W. Moore

Instance-based 
learning 

(a.k.a. memory-based) (a.k.a. non-
parametric regression) (a.k.a. case-

based) (a.k.a kernel-based)

Andrew W. Moore
Professor

School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of 
these slides. Andrew would be 
delighted if you found this source 
material useful in giving your own 
lectures. Feel free to use these slides 
verbatim, or to modify them to fit your 
own needs. PowerPoint originals are 
available. If you make use of a 
significant portion of these slides in 
your own lecture, please include this 
message, or the following link to the 
source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials
. Comments and corrections gratefully 
received. 

Software to play with the algorithms in 
this tutorial, and example data are 
available from: 
http://www.cs.cmu.edu/~awm/vizier . 
The example figures in this slide-set were 
created with the same software and data.
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Overview
• What do we want a regressor to do?
• Why not stick with polynomial regression? Why not 

just “join the dots”? 
• What’s k-nearest-neighbor all about? 
• And how about kernel regression, locally weighted 

regression?
• Hmm.  But what about multivariate fitting?
• And how do you compute all that stuff? And why 

should I care?
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This Tutorial’s Starting Point

Simple, uni-
variate case General, multi 

variate case

We’ve obtained some 
numeric data.

How do we exploit it?

......

......

......

0.5880-0.3394-0.73590.56690.8457-0.5682

0.77050.6493-0.5151-0.56900.87770.2668

0.51130.6237-0.54400.77180.77540.0332

-0.3367-0.8738-0.0768-0.66190.8105-0.1267

0.3098-0.80680.0385-0.0731-0.51430.4237

0.5753-0.4548-0.4510-0.26500.07450.7341

-0.6439-0.87390.60810.92540.6218-0.4627

-0.76230.0222-0.76480.0614-0.5975-0.2099

-0.6119-0.7267-0.1438-0.2459-0.53670.8622

-0.06470.6845-0.50870.6629-0.64880.3470

-0.95120.66200.83840.03570.3849-0.4788

GainSetptStage2WidthSpeedTemp

CoolCoolTempSlabLineSteel
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Why not just use Linear Regression?

Bias: the underlying choice of model (in this case, a line) cannot, with 
any choice of parameters (constant term and slope) and with any amount 
of data (the dots) capture the full relationship.

Here, linear regression 
may indeed be the right 
thing.

Here, linear regression 
appears to have a much 
better fit, but the bias is 
very clear.

Here, linear regression 
manages to capture a 
significant trend in the 
data, but there is visual 
evidence of bias.

Software and data for the algorithms in this tutorial: http://www.cs.cmu.edu/~awm/vizier . The 
example figures in this slide-set were created with the same software and data.
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Why not just Join the Dots?

Why is fitting the noise so bad?

Again, a clear case of 
noise fitting.

Here, joining the dots 
looks very sensible.

Here, joining the dots is 
clearly fitting noise.

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 6

Why not just Join the Dots?

Why is fitting the noise so bad?

Again, a clear case of 
noise fitting.

Here, joining the dots 
looks very sensible.

Here, joining the dots is 
clearly fitting noise.

•You will tend to make somewhat bigger 
prediction errors on new data than if you 
filtered the noise perfectly.

•You don’t get good gradient estimates or 
noise estimates.

•You can’t make sensible confidence intervals.
• It’s morally wrong.
•Also: Join the dots is much harder to 
implement for multivariate inputs.



4

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 7

One-Nearest Neighbor
…One nearest neighbor for fitting is described shortly…

Similar to Join The Dots with two Pros and one Con.
• PRO:  It is easy to implement with multivariate inputs.
• CON:  It no longer interpolates locally.
• PRO:  An excellent introduction to instance-based learning…
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Univariate 1-Nearest Neighbor
Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume 
yi=f(si) for some unknown function f.
Given query point xq, your job is to predict 
Nearest Neighbor:
1.   Find the closest xi in our set of datapoints
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2.  Predict

Here’s a 
dataset with 
one input, one 
output and 
four 
datapoints.
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1-Nearest Neighbor is an example of….
Instance-based learning

Four things make a memory based learner:
• A distance metric
• How many nearby neighbors to look at?
• A weighting function (optional)
• How to fit with the local points?

x1 y1
x2 y2
x3 y3

.

.
xn yn

A function approximator 
that has been around 
since about 1910.

To make a prediction, 
search database for 
similar datapoints, and fit 
with the local points.
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Nearest Neighbor
Four things make a memory based learner:
1. A distance metric

Euclidian
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the same output as the nearest 
neighbor.
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Multivariate Distance Metrics
Suppose the input vectors x1, x2, …xn are two dimensional:
x1 = ( x11 , x12 ) , x2 = ( x21 , x22 ) , …xN = ( xN1 , xN2 ).
One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi1 – xj1)2+(3xi2 – 3xj2)2Dist(xi,xj) = (xi1 – xj1)2 + (xi2 – xj2)2

The relative scalings in the distance metric affect region shapes.
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Euclidean Distance Metric

Other Metrics…
• Mahalanobis, Rank-based, Correlation-based 

(Stanfill+Waltz, Maes’ Ringo system…)
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The Zen of Voronoi Diagrams
CNN Article

Mystery of renowned zen
garden revealed

Thursday, September 26, 2002 Posted: 10:11 AM 
EDT (1411 GMT)

LONDON (Reuters) -- For centuries visitors to the 
renowned Ryoanji Temple garden in Kyoto, 
Japan have been entranced and mystified by 
the simple arrangement of rocks.

The five sparse clusters on a rectangle of raked 
gravel are said to be pleasing to the eyes of 
the hundreds of thousands of tourists who visit 
the garden each year.

Scientists in Japan said on Wednesday they now 
believe they have discovered its mysterious 
appeal.

"We have uncovered the implicit structure of the 
Ryoanji garden's visual ground and have 
shown that it includes an abstract, minimalist 
depiction of natural scenery," said Gert Van 
Tonder of Kyoto University.

The researchers discovered that the empty space of 
the garden evokes a hidden image of a branching 
tree that is sensed by the unconscious mind.

"We believe that the unconscious perception of this 
pattern contributes to the enigmatic appeal of the 
garden," Van Tonder added.

He and his colleagues believe that whoever created 
the garden during the Muromachi era between 
1333-1573 knew exactly what they were doing 
and placed the rocks around the tree image.

By using a concept called medial-axis transformation, 
the scientists showed that the hidden branched 
tree converges on the main area from which the 
garden is viewed.

The trunk leads to the prime viewing site in the 
ancient temple that once overlooked the garden.

It is thought that abstract art may have a similar 
impact.

"There is a growing realisation that scientific analysis 
can reveal unexpected structural features hidden 
in controversial abstract paintings," Van Tonder
said 
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Zen Part Two

(Photos and article extracted from www.cnn.com)

Question: what set of five rocks placed at a 
distance would have not produced a tree-like 
voronoi diagram?
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Notable Distance Metrics
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One-Nearest Neighbor

Objection:
That noise-fitting is really objectionable.
What’s the most obvious way of dealing with it?

..let’s leave distance metrics for now, and go back to….
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k-Nearest Neighbor
Four things make a memory based learner:
1. A distance metric

Euclidian
2. How many nearby neighbors to look at?

k
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the average output among the k 
nearest neighbors.
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k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but 
there are clear deficiencies.
What can we do about all the discontinuities that k-NN gives us?

Fits much less of the noise, 
captures trends. But still, 
frankly, pathetic compared 
with linear regression.

Appalling behavior! Loses 
all the detail that join-
the-dots and 1-nearest-
neighbor gave us, yet 
smears the ends.

A magnificent job of noise-
smoothing. Three cheers for 
9-nearest-neighbor.
But the lack of gradients and 
the jerkiness isn’t good.
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Kernel Regression
Four things make a memory based learner:
1. A distance metric

Scaled Euclidian
2. How many nearby neighbors to look at?

All of them
3. A weighting function (optional)

wi = exp(-D(xi, query)2 / Kw
2)

Nearby points to the query are weighted strongly, 
far points weakly. The KW parameter is the 
Kernel Width. Very important.

4. How to fit with the local points?
Predict the weighted average of the outputs:
predict = Σwiyi / Σwi
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Kernel Regression in Pictures

Take this 
dataset…

..and do a kernel 
prediction with xq 
(query) = 310,    
Kw = 50.
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Varying the Query

xq = 150 xq = 395
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Varying the kernel width

Increasing the kernel width Kw means further away points get an 
opportunity to influence you.
As Kw infinity, the prediction tends to the global average.

xq = 310 (the 
same)
KW = 150

xq = 310 (the 
same)
KW = 100

xq = 310
KW = 50 (see the 
double arrow at top of 
diagram)
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Kernel Regression Predictions

Increasing the kernel width Kw means further away 
points get an opportunity to influence you.
As Kw infinity, the prediction tends to the global average.

KW=80KW=20KW=10
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Kernel Regression on our test cases

KW=1/16 axis width.
Nice and smooth, but 
are the bumps 
justified, or is this 
overfitting?

KW=1/32 of x-axis width.
Quite splendid. Well done, 
kernel regression. The 
author needed to choose 
the right KW to achieve this.

KW=1/32 of x-axis width.
It’s nice to see a smooth 
curve at last. But rather 
bumpy. If Kw gets any 
higher, the fit is poor.

Choosing a good Kw is important. Not just for Kernel Regression, but 
for all the locally weighted learners we’re about to see.

Software and data for the algorithms in this tutorial: http://www.cs.cmu.edu/~awm/vizier . The 
example figures in this slide-set were created with the same software and data.
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Weighting functions

Let

d=D(xi,xquery)/KW

Then here are some 
commonly used 
weighting functions…

(we use a Gaussian)
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Weighting functions

Let

d=D(xi,xquery)/KW

Then here are some 
commonly used 
weighting functions…

(we use a Gaussian)

Newsflash:

The word on the street from 
recent non-parametric 
statistics papers is that the 
precise choice of kernel shape 
doesn’t matter much.
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Kernel Regression can look bad

KW = Best.

Three noisy linear 
segments. But best 
kernel regression gives 
poor gradients.

KW = Best.

Also much too local. 
Why wouldn’t 
increasing Kw help? 
Because then it would 
all be “smeared”.

KW = Best.

Clearly not capturing 
the simple structure of 
the data.. Note the 
complete failure to 
extrapolate at edges.

Time to try something more powerful…

Copyright © 2001, 2005, Andrew W. Moore Instance-based learning: Slide 28

Locally Weighted 
Regression

Kernel Regression:
Take a very very conservative function 
approximator called AVERAGING. Locally 
weight it.

Locally Weighted Regression:
Take a conservative function approximator 
called LINEAR REGRESSION. Locally weight it.

Let’s Review Linear Regression….
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Unweighted Linear Regression
You’re lying asleep in bed. Then Nature wakes you.

YOU:  “Oh. Hello, Nature!”

NATURE:  “I have a coefficient β in mind. I took a bunch of 
real numbers called x1, x2 ..xN thus: x1=3.1,x2=2, …xN=4.5.

For each of them (k=1,2,..N), I generated yk= βxk+εk

where εk is a Gaussian (i.e. Normal) random variable with 
mean 0 and standard deviation σ. The εk’s were generated 
independently of each other.

Here are the resulting yi’s: y1=5.1 ,  y2=4.2 , …yN=10.2”

You: “Uh-huh.”

Nature: “So what do you reckon β is then, eh?”

WHAT IS YOUR RESPONSE?
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Global Linear Regression: yk=βxk +εk

Which value of β makes the y1, y2..yN values most likely?
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Least squares unweighted linear regression
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Multivariate unweighted linear regression
Nature supplies N input vectors.  Each input vector xk
is D-dimensional: xk = ( xk1, xk2 .. xkD ) .  Nature also supplies N 
corresponding output values y1 .. yN.
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We must estimate β = (β1, β2 … βD). It’s easily shown using matrices 
instead of scalars on the previous slide that

Note that XTX is a D x D positive definite symmetric matrix, and XTY is a 
D x 1 vector:
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The Pesky Constant Term
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Now: Nature doesn’t guarantee that the line/hyperplane passes 
through the origin.

In other words:  Nature says

“No problem,” you reply.  “Just add one extra input variable, xk0, which is 
always 1”
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Locally Weighted Regression
Four things make a memory-based learner:
1. A distance metric

Scaled Euclidian
2. How many nearby neighbors to look at?

All of them
3. A weighting function (optional)

wk = exp(-D(xk, xquery)2 / Kw
2)

Nearby points to the query are weighted strongly, far points 
weakly. The Kw parameter is the Kernel Width.

4. How to fit with the local points?
First form a local linear model.  Find the β that minimizes the 
locally weighted sum of squared residuals:
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How LWR works

1. For each point (xk,yk) compute wk.
2. Let WX = Diag(w1,..wN)X

X - - >          WX

3. Let WY=Diag(w1,..wN)Y, so that yk
wkyk

4. β = (WXTWX)-1(WXTWY)
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Linear regression not 
flexible but trains like 
lightning.

Locally weighted regression is 
very flexible and fast to train.

Query

Find w to minimize 
Σ(yi-ΣwjTj(xi))2

directly: w=(XTX)-1XTY
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Input X matrix of inputs: X[k] [i] = i’th component of k’th input point.
Input Y matrix of outputs: Y[k] = k’th output value.
Input xq = query input.  Input kwidth.

WXTWX = empty (D+1) x (D+1) matrix
WXTWY = empty (D+1) x 1        matrix

for ( k = 1 ; k <= N ; k = k + 1 )
/* Compute weight of kth point  */
wk = weight_function( distance( xq , X[k] ) / kwidth )

/* Add to (WX) ^T (WX) matrix */
for ( i = 0 ; i <= D ; i = i + 1 )

for ( j = 0 ; j <= D ; j = j + 1 )
if ( i == 0 ) xki = 1 else xki = X[k] [i]
if ( j == 0 ) xkj = 1 else xkj = X[k] [j]
WXTWX [i] [j] = WXTWX [i] [j] + wk * wk * xki * xkj

/*  Add to (WX) ^T (WY) vector */
for ( i = 0 ; i <= D ; i = i + 1 )

if ( i == 0 ) xki = 1 else xki = X[k] [i]
WXTWY [i] = WXTWY [i] + wk * wk * xki * Y[k]

/* Compute the local beta.  Call your favorite linear equation solver.  Recommend Cholesky 
Decomposition for speed.  Recommend Singular Val Decomp for Robustness. */

beta = (WXTWX)-1 (WXTWY)
ypredict = beta[0] + beta[1]*xq[1] + beta[2]*xq[2] + … beta[D]*xq[D]
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LWR on our test cases

KW = 1/8 of x-axis 
width.

Nicer and smoother, 
but even now, are 
the bumps justified, 
or is this overfitting?

KW = 1/32 of x-axis 
width.

KW = 1/16 of x-axis 
width.

Software and data for the algorithms in this tutorial: http://www.cs.cmu.edu/~awm/vizier . The 
example figures in this slide-set were created with the same software and data.
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Locally weighted Polynomial regression

LW Quadratic Regression
Kernel width KW at 
optimal level.

KW = 1/15 x-axis

LW Linear Regression
Kernel width KW at 
optimal level.

KW = 1/40 x-axis

Kernel Regression
Kernel width KW at 
optimal level.

KW = 1/100 x-axis

Local quadratic regression is easy: just add quadratic terms to the 
WXTWX matrix. As the regression degree increases, the kernel width 
can increase without introducing bias.

Software and data for the algorithms in this tutorial: http://www.cs.cmu.edu/~awm/vizier . The 
example figures in this slide-set were created with the same software and data.
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When’s Quadratic better than Linear?
• It can let you use a wider kernel without introducing bias.
• Sometimes you want more than a prediction, you want an 

estimate of the local Hessian. Then quadratic is your friend!
• But in higher dimensions is appallingly expensive, and needs a 

lot of data. (Why?)
• Two “Part-way-between-linear-and-quadratic” polynomials:

• “Ellipses”: Add xi
2 terms to the model, but not cross-terms 

(no xixj where i=j)
• “Circles”: Add only one extra term to the model:

• Incremental insertion of polynomial terms is well established in
conventional regression (GMDH,AIM): potentially useful here too

∑
=
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j
jD xx
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1
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Multivariate Locally weighted learning

All the methods described so far can generalize to 
multivariate input and output.  But new questions arise: 

What are good scalings for a Euclidean distance metric?
What is a better Euclidean distance metric?
Are all features relevant?
Do some features have a global rather than local influence?
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A Bivariate Fit Example
LWQ Regression

Let’s graph the prediction 
surface given 100 noisy 
datapoints: each with 2 
inputs, one output
Kernel Width, Number of fully 
weighted Neighbors, Distance 
Metric Scales all optimized.
Kw = 1/16 axis width
4 nearest neighs full weight
Distance metric scales each axis 
equally.

f(x,y) = sin(x) + sin(y) + 
noise

Software and data for the algorithms in 
this tutorial: 
http://www.cs.cmu.edu/~awm/vizier . The 
example figures in this slide-set were 
created with the same software and data.
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Two more bivariate fits
Locally weighted linear regression.
KW, num neighs, metric scales all 
optimized.
KW=1/50 x-axis width. No 
neighbors fully weighted. y not 
included in distance metric, but is 
included in the regression.
f(x,y) = sin(x*x)+y+noise

Kernel Regression.

KW, num neighs, metric scales all 
optimized.

KW=1/100 x-axis width. 1-NN fully 
weighted. y not included in 
distance metric.

f(x,y) = sin(x*x)
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Fabricated Example
f(x1,x2,x3,x4,x5,x6,x7,x8,x9) = noise + x2 + x4 + 4sin(0.3x6 + 0.3x8).
(Here we see the result of searching for the best metric, feature set, kernel width, 
polynomial type for a set of 300 examples generated from the above function)

Recommendation.

Based on the search results so far, the recommended function approximator 
encoding is L20:SN:-0-0-9-9. Let me explain the meaning:

Locally weighted regression.  The following features define the distance metric:
x6   (full strength).
x8   (full strength).

A gaussian weighting function is used with kernel width 0.0441942 in scaled 
input space.  We do a weighted least squares with the following terms:

Term 0 = 1
Term 1 = x2/10
Term 2 = x4/10
Term 3 = x6/10
Term 4 = x8/10
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Locally Weighted Learning: Variants
• Range Searching: Average of all neighbors within a given 

range
• Range-based linear regression: Linear regression on all 

points within a given range
• Linear Regression on K-nearest-neighbors
• Weighting functions that decay to zero at the kth nearest 

neighbor
• Locally weighted Iteratively Reweighted Least Squares
• Locally weighted Logistic Regression
• Locally weighted classifiers

• Multilinear Interpolation
• Kuhn-Triangulation-based Interpolation
• Spline Smoothers
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Using Locally Weighted Learning for 
Modeling

• “Hands-off” non-parametric relation finding
• Low Dimensional Supervised Learning
• Complex Function of a subset of inputs
• Simple function of most inputs but complex 

function of a few
• Complex function of a few features of many 

input variables
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Use (1): “Hands-off” non-parametric relation 
finding.

You run an HMO (or a steel tempering process) (or a 7-dof dynamic robot arm)

You want an intelligent assistant to spot patterns and regularities among pairs or 
triplets of variables in your database…

….….….

ThrustRateCoolTunn2 TempZip Median Age

FlightTimeCoolTunn5 SepPatient ZIP

LaserHeightCoolTunn2 SetpMortality/100

SonarHeightSlab Temp Stg2Market Share

DDPitchSlab Temp Stg1ICD-9 Diagnosis

DPitchSlab heightDischarges/100

PitchSlab widthCharge/Discharge

DDRollLine Spd -20minsCharge/Day

DRollLine Spd -10minsPatient Age

RollLine SpeedPhysician Age

Robot Variables:Steel Variables:HMO variables:

You especially want to find more than just the linear correlations….
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Use (2): Low Dimensional Supervised Learning

Examples:
• Skin Thickness vs τ,φ for face scanner
• Topographical Map
• Tumor density vs (x,y,z)
• Mean wasted Aspirin vs (fill-target, mean-weight, weight-sdev, rate) for an 

aspirin-bottle filler
• Object-ball collision-point vs (x,y,θ) in Pool

You have lots of data, not many input variables (less than 7, say) and 
you expect a very complex non-linear function of the data.
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Use (3): Complex Function of a subset of inputs
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Use (4): Simple function of most inputs but complex 
function of a few.

Examples:
• f(x) = x1 + 3x2 – x4 + sin(log(x5)*x6) – x7

2 + x8 – x9 + 8x10

• Car Engine Emissions

• Food Cooling Tunnel
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Use (5): Complex function of a few features of 
many input variables.

Examples:
• Mapping from acoustic signals to “Probability of Machine 

Breakdown”.
• Time series data analysis.
• Mapping from Images to classifications.
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• (e.g. Product inspection, Medical imagery, Thin Film imaging..)
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Local Weighted Learning: Pros & Cons vs Neural Nets

Local weighted learning has some advantages:
• Can fit low dimensional, very complex, functions very accurately. Neural 

nets require considerable tweaking to do this.
• You can get meaningful confidence intervals, local gradients back, not 

merely a prediction.
• Training, adding new data, is almost free.
• “One-shot” learning---not incremental
• Variable resolution.
• Doesn’t forget old training data unless statistics warrant.
• Cross-validation is cheap

Neural Nets have some advantages:
• With large datasets, MBL predictions are slow (although kdtree 

approximations, and newer cache approximations help a lot).
• Neural nets can be trained directly on problems with hundreds or

thousands of inputs (e.g. from images). MBL would need someone to 
define a smaller set of image features instead.

• Nets learn incrementally.
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What we have covered
• Problems of bias for unweighted regression, and noise-

fitting for “join the dots” methods
• Nearest Neighbor and k-nearest neighbor
• Distance Metrics
• Kernel Regression
• Weighting functions
• Stable kernel regression
• Review of unweighted linear regression
• Locally weighted regression: concept and implementation
• Multivariate Issues
• Other Locally Weighted variants
• Where to use locally weighted learning for modeling?
• Locally weighted pros and cons


