
1

Slide 1

Robot Motion
Planning
Andrew W. Moore

Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of these slides. Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a significant portion of these
slides in your own lecture, please include this message, or the following link to the source repository of
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Very highly recommended book to buy if you’re even only half interested in
geometry-meets-search-meets-AI-meets-robotics: Robot Motion Planning by
Jean Claude Latombe (Kluwer, 1990)

Slide 2

Let’s Think About Automating
Reasoning

• We’ve already seen
Reasoning with Constraints
State space search in discrete spaces
Reasoning with multiple agents

• Later (in this course) we’ll see
Probabilistic Reasoning with Markov Decision
Processes, Reinforcement Learning and HMMS

• But NOW let’s think about

SPATIAL REASONING

2

Slide 3

Spatial Reasoning

Can’t we use our previous methods?
Discrete Search? – Not a discrete problem
CSP? – Not a natural CSP formulation
Probabilistic? – Nope.

Start
Configuration

Immovable
Obstacles

Goal Configuration

Slide 4

Robots
For our purposes, a robot is:

A set of moving rigid objects called LINKS which are connected by
JOINTS.

Typically, joints are
REVOLUTE or PRISMATIC.

Such joints each give one
DEGREE OF FREEDOM.

Given p DOFs, the configuration of the robot can be represented by p
values q = (q1 q2 ··· qp) where qi is the angle or length of the i’th joint

3

Slide 5

Free-Flying Polygons
If part of the robot is fixed in the world, the joints are all the DOFs
you’re getting. But if the robot can be free-flying we get more DOFs.

Fixed

May move in x
direction or y
direction

May move in x
& y dir and may
rotate

Question: How
many DOFs for a
polyhedron free
flying in 3D space?

0 DOFs 2 DOFs

3 DOFs

Slide 6

Examples

The configuration q has one real valued entry per DOF.
~

·
·

··

·
·

Fixed

How many DOFs?

Free flying

How many DOFs?

Midline ■■■ must
always be horizontal.

How many DOFs?

4

Slide 7

Robot Motion Planning
An important, interesting, spatial reasoning problem.
• Let A be a robot with p degrees of freedom,

living in a 2-D or 3-D world.
• Let B be a set of obstacles in this 2-D or 3-D

world.
• Call a configuration LEGAL if it neither intersects

any obstacles nor self-intersects.
• Given an initial configuration qstart and a goal

config qgoal, generate a continuous path of legal
configurations between them, or report failure if
no such path exists.

~

~

Slide 8

Configuration Space

Is the set of legal configurations of the robot.
It also defines the topology of continuous
motions

For rigid-object robots (no joints) there exists
a transformation to the robot and obstacles
that turns the robot into a single point. The

C-Space Transform

5

Slide 9

Configuration Space Transform
Examples 2-D World

2 DOFs

Where can I move
this robot in the
vicinity of this

obstacle? …is
equivalent
to…

Where can I move
this point in the
vicinity of this

expanded
obstacle?

Slide 10

Configuration Space Transform
Examples 2-D World

2 DOFs

Where can I move
this robot in the
vicinity of this

obstacle? …is
equivalent
to…

Where can I move
this point in the
vicinity of this

expanded
obstacle?

Assuming you’re
not allowed to
rotate

6

Slide 11

Configuration Space Transform Examples
2-D World
3 DOFs

We’ve turned the problem from “Twist and turn this 2-D polygon past this
other 2-D polygon” into “Find a path for this point in 3-D space past this weird
3-D obstacle”.

Why’s this transform useful?
Because we can plan paths for points instead of polyhedra/polygons

Slide 12

Warning: Topology
If you ever tried implementing these things you’ll quickly start having to
deal with spaces which aren’t ℜN.
E.G. The space of directions in 2-D space: SO(2).
AND The space of directions and orientations in 3-D space: SO(3).
AND Cartesian products thereof.
NOT JUST A CASE OF: “So what? Some of my real numbers happen
to be angles”.

7

Slide 13

Robot Motion Planning Research
…Has produced four kinds of algorithms. The first is the
Visibility Graph.

Slide 14

Visibility Graph
Suppose someone gives you a CSPACE with polygonal obstacles

If there were no blocks,
shortest path would be
a straight line.
Else it must be a
sequence of straight
lines “shaving” corners
of obstacles.qstart

qgoal

Obvious, but very
awkward to prove

8

Slide 15

Visibility Graph Algorithm

1.Find all non-blocked
lines between polygon
vertices, start and goal.
2.Search the graph of
these lines for the
shortest path. (Guess
best search algorithm?)

qstart

qgoal

If there are n vertices,

the easy algorithm is

O(n3). Slightly

tougher O(n2 logn).

O(n2) in theory.

Slide 16

• Visibility graph method finds the shortest path.
• Bit it does so by skirting along and close to

obstacles.
• Any error in control, or model of obstacle

locations, and Bang! Screech!!

Who cares about optimality?
Perhaps we want to get a non-stupid path that
steers as far from the obstacles as it can.

Visibility Graph Method
COMPLAINT

9

Slide 17

Voronoi Diagrams

Someone gives you some dots. Each dot is a different
color.
You color in the whole of 2-D space according to this rule:

“The color of any given point equals the color of the
nearest dot.”

The borders between your different regions are a VORNOI
DIAGRAM.

For n point in 2-D space the exact Voronoi diagram can be computed in time
O(n log n).

R

G B

Y

Slide 18

Voronoi Diagram from Polygons
instead of Points

10

Slide 19

Voronoi Diagram Methods for C-
Space Motion Planning

• Compute the Voronoi Diagram of C-space.
• Compute shortest straightline path from

start to any point on Voronoi Diagram.
• Compute shortest straightline path from

goal to any point on Voronoi Diagram.
• Compute shortest path from start to goal

along Voronoi Diagram.

Slide 20

Voronoi Diagrams

• Assumes polygons, and very complex above 2-D.
Answer: very nifty approximate algorithms (see Howie
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

• This “use Voronoi to keep clear of obstacles” is just a
heuristic. And can be made to look stupid:

COMPLAINT

Can you see
how?

11

Slide 21

Voronoi Diagrams

• Assumes polygons, and very complex above 2-D.
Answer: very nifty approximate algorithms (see Howie
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

• This “use Voronoi to keep clear of obstacles” is just a
heuristic. And can be made to look stupid:

COMPLAINT

Start · · Goal

Slide 22

Cell Decomposition Methods
Cell Decomp Method One: Exact Decomp
• Break free space into convex exact polygons.

…But this is also impractical above 2-D or with non-polygons.

12

Slide 23

Approximate Cell Decomposition

• Lay down a grid
• Avoid any cell which intersects an obstacle
• Plan shortest path through other cells (e.g. with A*)
If no path exists, double the resolution and try again. Keep trying!!

S
...
.....

..·.
..··

....
.....

..·

..
..

G..

Slide 24

Variable Resolution “Approximate and Decompose”

13

Slide 25

Variable Resolution “Approximate and Decompose”

Slide 26

Approximate Cell Decomposition

Not so many complaints. This is actually
used in practical systems.

But
o Not exact (no notion of “best” path)
o Not complete: doesn’t know if problem

actually unsolvable
o Still hopeless above a small number of

dimensions?

COMPLAINTS

14

Slide 27

Potential Methods

SIMPLE MOTION
PLANNER: Steepest
Descent on u

() () ()

() ()()
()∑ +=

−=

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

→
→

ℜ→

⎟
⎠
⎞

⎜
⎝
⎛

2
2

~~

~~~

~

1
2
1

2
1   :definition Preferred

   : of definition One

obstaclenearest   to from distance              

goal   to from distance      Write

goal  the towardsmoveyou  as   small    
obstaclean   towardsmoveyou  as    huge    

Such that
ionsConfigurat:    

   function   a Define

qd
qdqu

qdqdquu

qqd

qqqd

u
u

u

qu

i
g

gi

i

g

η

Slide 28

Potential 
Field 

Example



15

Slide 29

Solution I:
Use special local-minimum-free potential fields (Laplace 
equations can do this) – But very expensive to compute

Solution II:
When at a local minimum start doing some searching 
- example soon

Spot the Obvious Problem!

Slide 30

Comparison

Easy to Implement?

Spots Impossibilities?

Gives Optimal?

Usable Online?

Fast to Compute?

Practical above 8 D?

Practical above 2 or 3 D?

VisibilityVoronoi
Approx 
Cell 
Decomp

Potential 
Fields



16

Slide 31

Latombe’s Numerical Potential 
Field Method

• Combines Cell Decomposition and Potential 
Fields

• Key insight: Compute an “optimal” potential field 
in world coordinate space (not config space)

• Define a C-space potential field in terms of 
world-space potential field.

And now…..

Let’s look at one of the state-of-the-art motion 
planners.

Slide 32

N.P.F. Step I
Get given a problem.
You have a world ω which is a 2-D or 3-D space.
There are obstacles and a robot.

Robot may be fixed or free-flying, may be jointed or 
totally rigid.

You have a start configuration.
Goal spec. is more flexible than mere goal configuration:

You can specify between 1 and P points (P = number 
of DOFs) in world space, and state that various points on 
the robot should meet those world points.  E.G.

“I want my tip to end 
up here”

“I want my tip here, my wrist 
there, and my shoulder way over 
there.”

or



17

Slide 33

N.P.F. Step II
For each given world-goal-point we compute 
an optimal potential field in worldspace.

Example: world-goal-point 
for x joint on 
arm

Optimal potential field can simply be 
“shortest distance”.

Computed by discretizing 
world-space on a fine grid.

Q:  Why is fine grid not too 
expensive now?

Slide 34

Skeletons in the World Space

• Easy to skeletonize with a grid
Then what?

1. Extend the skeleton to join to the goal
2. Compute least-cost-to-goal for all points on skeleton
3. Define potential field by traveling downhill to local part of skeleton.

The exact definition of this is unclear. It is NOT “shortest path to skeleton” and not 
“shortest path to goal” but a kind of combination. Defined inductively by first de**** all 
points 1 away from skeleton as 1 + least adjacent skeleton-cell cost. Then points next to 
them, etc., etc.

Zombie 
DNA



18

Slide 35

Potential from the Skeleton Method

Remember, we do one of these for each world-
goal-point.

Slide 36

N.P.F. IV
Compute a potential field for configurations.
Remember, for each goal point we have computed a world-
space potential.

“B” point contours “A” point contours

. B goal

. A goalB
A



19

Slide 37

N.P.F. IV
Combining world space potentials into a C-space potential.
If Wi(pointi(q) is the potential field for the i’th distinguished 
point on the robot…
We could define

~

∑ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

heddistinguisei
ii qWq

.. ~~
pointµ

or many other combination methods, e.g.

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

~..~
pointmax qWq iiheddistinguisei

µ

Empirically, this is preferred

Slide 38

NPF V
Perform gradient descent from the start configuration with 
your C-space potential field…

Until…
You get to the goal config
You find you’re in a local minimum.

Sadly, although the worldspace potentials 
were minimum-free, the combination is not.

What to do in a local minimum??
1. Best first search
2. Random search

We’re pretty much done!



20

Slide 39

Best First Search with NPF
• Remember all the C-space places you’ve 

visited in the search (search on a fine C-
space grid).

• When you expand a grid point consider all 
its neighbors on the grid.

• Always expand gridpoint with lowest C-
space potential value.

– During most of search runs quickly down gradient.
– When in a local minimum, must wait for minimum to 

“fill up”.

Slide 40

Empirical Results

3 degrees of freedom.

1/10 second to solve on a SPARC. 
(In 1992 claimed to be fastest 
algorithm by 2 orders of 
magnitude, and three orders of 
nuns.)

5 seconds to solve.



21

Slide 41

Randomized Search with NPF
• On each step choose from a random set 

of, say, 100 neighbors on C-space grid.
• If none reduce the potential, current state 

is recorded as being a local minimum.
• If was local minimum, perform a random walk for t

timesteps to escape (one hopes)

• Keep doing this, building up a graph of 
“adjacent” local minima.

• Continue until one local minimum turns out 
to be the goal.

HOW?  Many details, and a slightly depressingly large 
number of magic parameters are involved.

Slide 42

Randomized Search Results
10 secs. (Slower than best first)

2 mins.      8 DOF

Spectacular result.



22

Slide 43

Randomized Search Results

10 DOF   3 mins.

31 DOF manipulator in 3-D workspace        15 mins.

Slide 44

What Should You Know

• How to define configuration space obstacles
• The basic idea behind, and Pros and Cons of

VISIBILITY GRAPH METHODS
VORONOI METHODS
CELL DECOMPOSITION METHODS
POTENTIAL FIELD METHODS

• Latombe’s trick of using optimal world-space 
potentials for good C-space potentials.

See also the book Robot Motion Planning by Latombe (Klumer 1990).  
Russell & Norvig has a rather brief chapter on the subject.



23

Slide 45

Comparison

Easy to Implement?

Spots Impossibilities?

In 2-dGives Optimal?

Usable Online?

In 2-dFast to Compute?

Practical above 8 D?

Practical above 2 or 3 D?

VisibilityVoronoi
Approx 
Cell 
Decomp

Potential 
Fields

?

?

?


