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Robot Motion 
Planning
Andrew W. Moore

Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of these slides. Andrew would be delighted if you found this source 
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit 
your own needs. PowerPoint originals are available. If you make use of a significant portion of these 
slides in your own lecture, please include this message, or the following link to the source repository of 
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received. 

Very highly recommended book to buy if you’re even only half interested in 
geometry-meets-search-meets-AI-meets-robotics: Robot Motion Planning by 
Jean Claude Latombe (Kluwer, 1990)
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Let’s Think About Automating 
Reasoning

• We’ve already seen
Reasoning with Constraints
State space search in discrete spaces
Reasoning with multiple agents

• Later (in this course) we’ll see 
Probabilistic Reasoning with Markov Decision 
Processes, Reinforcement Learning and HMMS

• But NOW let’s think about

SPATIAL REASONING
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Spatial Reasoning

Can’t we use our previous methods?
Discrete Search? – Not a discrete problem
CSP? – Not a natural CSP formulation
Probabilistic? – Nope.

Start 
Configuration

Immovable 
Obstacles

Goal Configuration
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Robots
For our purposes, a robot is: 

A set of moving rigid objects called LINKS which are connected by 
JOINTS.

Typically, joints are 
REVOLUTE or PRISMATIC.

Such joints each give one 
DEGREE OF FREEDOM.

Given p DOFs, the configuration of the robot can be represented by p
values q = (q1 q2 ··· qp) where qi is the angle or length of the i’th joint
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Free-Flying Polygons
If part of the robot is fixed in the world, the joints are all the DOFs 
you’re getting.  But if the robot can be free-flying we get more DOFs.

Fixed

May move in x
direction or y
direction

May move in x
& y dir and may 
rotate

Question: How 
many DOFs for a 
polyhedron free 
flying in 3D space?

0 DOFs 2 DOFs

3 DOFs
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Examples

The configuration q has one real valued entry per DOF.
~

·
·

··

·
·

Fixed

How many DOFs?

Free flying

How many DOFs?

Midline ■■■ must 
always be horizontal.

How many DOFs?
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Robot Motion Planning
An important, interesting, spatial reasoning problem.
• Let A be a robot with p degrees of freedom, 

living in a 2-D or 3-D world.
• Let B be a set of obstacles in this 2-D or 3-D 

world.
• Call a configuration LEGAL if it neither intersects 

any obstacles nor self-intersects.
• Given an initial configuration qstart and a goal 

config qgoal, generate a continuous path of legal 
configurations between them, or report failure if 
no such path exists.

~

~
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Configuration Space

Is the set of legal configurations of the robot.  
It also defines the topology of continuous 
motions

For rigid-object robots (no joints) there exists 
a transformation to the robot and obstacles 
that turns the robot into a single point.  The 

C-Space Transform
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Configuration Space Transform 
Examples 2-D World

2 DOFs

Where can I move 
this robot in the 
vicinity of this 

obstacle? …is 
equivalent 
to…

Where can I move 
this point in the 
vicinity of this 

expanded 
obstacle?
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Configuration Space Transform 
Examples 2-D World

2 DOFs

Where can I move 
this robot in the 
vicinity of this 

obstacle? …is 
equivalent 
to…

Where can I move 
this point in the 
vicinity of this 

expanded 
obstacle?

Assuming you’re 
not allowed to 
rotate
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Configuration Space Transform Examples
2-D World
3 DOFs

We’ve turned the problem from “Twist and turn this 2-D polygon past this 
other 2-D polygon” into “Find a path for this point in 3-D space past this weird 
3-D obstacle”.

Why’s this transform useful?
Because we can plan paths for points instead of polyhedra/polygons
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Warning: Topology
If you ever tried implementing these things you’ll quickly start having to 
deal with spaces which aren’t ℜN.
E.G. The space of directions in 2-D space: SO(2).
AND The space of directions and orientations in 3-D space: SO(3).
AND Cartesian products thereof.
NOT JUST A CASE OF: “So what? Some of my real numbers happen 
to be angles”.
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Robot Motion Planning Research
…Has produced four kinds of algorithms.  The first is the 
Visibility Graph.
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Visibility Graph
Suppose someone gives you a CSPACE with polygonal obstacles

If there were no blocks, 
shortest path would be 
a straight line.
Else it must be a 
sequence of straight 
lines “shaving” corners 
of obstacles.qstart

qgoal

Obvious, but very 
awkward to prove
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Visibility Graph Algorithm

1.Find all non-blocked 
lines between polygon 
vertices, start and goal.
2.Search the graph of 
these lines for the 
shortest path.  (Guess 
best search algorithm?)

qstart

qgoal

If there are n vertices, 

the easy algorithm is 

O(n3).  Slightly 

tougher O(n2 logn).  

O(n2) in theory.
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• Visibility graph method finds the shortest path.
• Bit it does so by skirting along and close to 

obstacles.
• Any error in control, or model of obstacle 

locations, and Bang!  Screech!!

Who cares about optimality?
Perhaps we want to get a non-stupid path that 
steers as far from the obstacles as it can.

Visibility Graph Method
COMPLAINT
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Voronoi Diagrams

Someone gives you some dots.  Each dot is a different 
color.
You color in the whole of 2-D space according to this rule:

“The color of any given point equals the color of the 
nearest dot.”

The borders between your different regions are a VORNOI 
DIAGRAM.

For n point in 2-D space the exact Voronoi diagram can be computed in time 
O(n log n).

R

G B

Y
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Voronoi Diagram from Polygons 
instead of Points
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Voronoi Diagram Methods for C-
Space Motion Planning

• Compute the Voronoi Diagram of C-space.
• Compute shortest straightline path from 

start to any point on Voronoi Diagram.
• Compute shortest straightline path from 

goal to any point on Voronoi Diagram.
• Compute shortest path from start to goal 

along Voronoi Diagram.
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Voronoi Diagrams

• Assumes polygons, and very complex above 2-D.
Answer: very nifty approximate algorithms (see Howie 
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

• This “use Voronoi to keep clear of obstacles” is just a 
heuristic.  And can be made to look stupid:

COMPLAINT

Can you see 
how?
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Voronoi Diagrams

• Assumes polygons, and very complex above 2-D.
Answer: very nifty approximate algorithms (see Howie 
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

• This “use Voronoi to keep clear of obstacles” is just a 
heuristic.  And can be made to look stupid:

COMPLAINT

Start  · · Goal
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Cell Decomposition Methods
Cell Decomp Method One:  Exact Decomp
• Break free space into convex exact polygons.

…But this is also impractical above 2-D or with non-polygons.
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Approximate Cell Decomposition

• Lay down a grid
• Avoid any cell which intersects an obstacle
• Plan shortest path through other cells (e.g. with A*)
If no path exists, double the resolution and try again.  Keep trying!!

S
...
.....

..·.
..··

....
.....

..·

..
..

G..
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Variable Resolution “Approximate and Decompose”
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Variable Resolution “Approximate and Decompose”
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Approximate Cell Decomposition

Not so many complaints.  This is actually 
used in practical systems.

But
o Not exact (no notion of “best” path)
o Not complete: doesn’t know if problem 

actually unsolvable
o Still hopeless above a small number of 

dimensions?

COMPLAINTS
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Potential Methods

SIMPLE MOTION 
PLANNER: Steepest 
Descent on u
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Potential 
Field 

Example
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Solution I:
Use special local-minimum-free potential fields (Laplace 
equations can do this) – But very expensive to compute

Solution II:
When at a local minimum start doing some searching 
- example soon

Spot the Obvious Problem!
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Comparison

Easy to Implement?

Spots Impossibilities?

Gives Optimal?

Usable Online?

Fast to Compute?

Practical above 8 D?

Practical above 2 or 3 D?

VisibilityVoronoi
Approx 
Cell 
Decomp

Potential 
Fields
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Latombe’s Numerical Potential 
Field Method

• Combines Cell Decomposition and Potential 
Fields

• Key insight: Compute an “optimal” potential field 
in world coordinate space (not config space)

• Define a C-space potential field in terms of 
world-space potential field.

And now…..

Let’s look at one of the state-of-the-art motion 
planners.
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N.P.F. Step I
Get given a problem.
You have a world ω which is a 2-D or 3-D space.
There are obstacles and a robot.

Robot may be fixed or free-flying, may be jointed or 
totally rigid.

You have a start configuration.
Goal spec. is more flexible than mere goal configuration:

You can specify between 1 and P points (P = number 
of DOFs) in world space, and state that various points on 
the robot should meet those world points.  E.G.

“I want my tip to end 
up here”

“I want my tip here, my wrist 
there, and my shoulder way over 
there.”

or
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N.P.F. Step II
For each given world-goal-point we compute 
an optimal potential field in worldspace.

Example: world-goal-point 
for x joint on 
arm

Optimal potential field can simply be 
“shortest distance”.

Computed by discretizing 
world-space on a fine grid.

Q:  Why is fine grid not too 
expensive now?
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Skeletons in the World Space

• Easy to skeletonize with a grid
Then what?

1. Extend the skeleton to join to the goal
2. Compute least-cost-to-goal for all points on skeleton
3. Define potential field by traveling downhill to local part of skeleton.

The exact definition of this is unclear. It is NOT “shortest path to skeleton” and not 
“shortest path to goal” but a kind of combination. Defined inductively by first de**** all 
points 1 away from skeleton as 1 + least adjacent skeleton-cell cost. Then points next to 
them, etc., etc.

Zombie 
DNA
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Potential from the Skeleton Method

Remember, we do one of these for each world-
goal-point.
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N.P.F. IV
Compute a potential field for configurations.
Remember, for each goal point we have computed a world-
space potential.

“B” point contours “A” point contours

. B goal

. A goalB
A
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N.P.F. IV
Combining world space potentials into a C-space potential.
If Wi(pointi(q) is the potential field for the i’th distinguished 
point on the robot…
We could define
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Empirically, this is preferred
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NPF V
Perform gradient descent from the start configuration with 
your C-space potential field…

Until…
You get to the goal config
You find you’re in a local minimum.

Sadly, although the worldspace potentials 
were minimum-free, the combination is not.

What to do in a local minimum??
1. Best first search
2. Random search

We’re pretty much done!
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Best First Search with NPF
• Remember all the C-space places you’ve 

visited in the search (search on a fine C-
space grid).

• When you expand a grid point consider all 
its neighbors on the grid.

• Always expand gridpoint with lowest C-
space potential value.

– During most of search runs quickly down gradient.
– When in a local minimum, must wait for minimum to 

“fill up”.
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Empirical Results

3 degrees of freedom.

1/10 second to solve on a SPARC. 
(In 1992 claimed to be fastest 
algorithm by 2 orders of 
magnitude, and three orders of 
nuns.)

5 seconds to solve.
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Randomized Search with NPF
• On each step choose from a random set 

of, say, 100 neighbors on C-space grid.
• If none reduce the potential, current state 

is recorded as being a local minimum.
• If was local minimum, perform a random walk for t

timesteps to escape (one hopes)

• Keep doing this, building up a graph of 
“adjacent” local minima.

• Continue until one local minimum turns out 
to be the goal.

HOW?  Many details, and a slightly depressingly large 
number of magic parameters are involved.
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Randomized Search Results
10 secs. (Slower than best first)

2 mins.      8 DOF

Spectacular result.
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Randomized Search Results

10 DOF   3 mins.

31 DOF manipulator in 3-D workspace        15 mins.
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What Should You Know

• How to define configuration space obstacles
• The basic idea behind, and Pros and Cons of

VISIBILITY GRAPH METHODS
VORONOI METHODS
CELL DECOMPOSITION METHODS
POTENTIAL FIELD METHODS

• Latombe’s trick of using optimal world-space 
potentials for good C-space potentials.

See also the book Robot Motion Planning by Latombe (Klumer 1990).  
Russell & Norvig has a rather brief chapter on the subject.
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Comparison

Easy to Implement?

Spots Impossibilities?

In 2-dGives Optimal?

Usable Online?

In 2-dFast to Compute?

Practical above 8 D?

Practical above 2 or 3 D?

VisibilityVoronoi
Approx 
Cell 
Decomp

Potential 
Fields

?

?

?


