
1

April 23rd, 2002Copyright © 2002, Andrew W. Moore

Andrew W. Moore
Associate Professor

School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Reinforcement
Learning

Note to other teachers and users of
these slides. Andrew would be delighted
if you found this source material useful in
giving your own lectures. Feel free to use
these slides verbatim, or to modify them
to fit your own needs. PowerPoint
originals are available. If you make use
of a significant portion of these slides in
your own lecture, please include this
message, or the following link to the
source repository of Andrew’s tutorials:
http://www.cs.cmu.edu/~awm/tutorials .
Comments and corrections gratefully
received.

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 2

Predicting Delayed Rewards IN A
DISCOUNTED MARKOV SYSTEM

Prob(next state = S5|this state = S4) = 0.8 etc…
What is expected sum of future rewards (discounted) ?

[]() [] 







=








Ε ∑

∞

=

St
t

t 0SSR
0

γ

Just Solve It! We use standard Markov System Theory

R=0

R=0
R=1R=-5

R=3 R=0

S6

S1

S5S4

S2
S3

0.4

0.2

0.5

0.5

0.50.8 1

0.2
0.4

0.4

0.50.6

2

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 3

Learning Delayed Rewards…

Task: Based on this sequence, estimate J*(S1),J*(S2)···J*(S6)

R=?

S1 ?

?

?
R=?

S3 ?

?

?

R=?

S4 ?

?

?
R=?

S5 ?

?

?

R=?

S2 ?

?

?

R=?

S6 ?

?

?

?

S1(R=0) S2(R=0) S3(R=4) S2(R=0) S4(R=0) S5(R=0)

All you can see is a series of states and rewards:

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 4

Idea 1: Supervised Learning

=Jest(S5)00S5

=Jest(S4)00S4

=Jest(S3)44S3

=Jest(S2)12 , 0S2

=Jest(S1)11S1

Mean LTDRObservations
of LTDR

State

Assume
?=1/2

S1(R=0) S2(R=0) S3(R=4) S2(R=0) S4(R=0) S5(R=0)

At t=1 we were in state S1 and eventually got a long term discounted
reward of 0+?0+?24+?30+?40…= 1

At t=2 in state S2 ltdr = 2 At t=5 in state S4 ltdr = 0
At t=3 in state S3 ltdr = 4 At t=6 in state S5 ltdr = 0
At t=4 in state S2 ltdr = 0

3

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 5

Supervised Learning ALG
• Watch a trajectory

S[0] r[0] S[1] r[1] ···· S[T]r[T]
• For t=0,1, ··· T , compute

• Compute

• You’re done!

∑ +=
∞

=0
][][J

i

i itrt γ

()















=

y trajectoron the statein
beginning ns transitioall among

]J[of mean value
J

i

i
est

S

t
S

() []

()
[]
()

()i

St
i

est

ii

S

t
S

StStS

i

MATCHES

J
J

define then },{MATCHESLet

MATCHES
∑

∈=

==

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 6

Supervised Learning ALG
for the timid

If you have an anxious
personality you may be worried
about edge effects for some of
the final transitions. With large
trajectories these are negligible.

• •

4

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 7

Online Supervised Learning
Initialize: Count[Si] = 0 ∀Si

SumJ[S i] = 0 ∀Si
Eligibility[Si] = 0 ∀Si

Observe:
When we experience S i with reward r

do this:
∀j Elig[S j] ?Elig[S j]

Elig[S j] Elig[S j] + 1
∀j SumJ[S j] SumJ[S j]+rxElig[Sj]

Count[Si] Count[Si] + 1
Then at any time,
Jest(Sj)= SumJ[S j]/Count[Sj]

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 8

Online Supervised Learning
Economics

Given N states S1 ··· SN , OSL needs O(N) memory.
Each update needs O(N) work since we must update all

Elig[] array elements

() () iii
est S SJSJ , T As ∀→∞→ ∗

Easy to prove:

Idea: Be sparse and only update/process Elig[]
elements with values >? for tiny ?

There are only
such elements














γξ
1log1log

5

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 9

Online Supervised Learning
Let’s grab OSL off the street, bundle it into a
black van, take it to a bunker and interrogate it
under 600 Watt lights.

00S5

00S4

44S3

12 , 0S2

11S1

 ̂
J(Si)

Observations of
LTDR

State

CO
MP

LA
IN

T

S1(r=0) S2(r=0) S3(r=4) S2(r=0) S4(r=0) S5(r=0)

There’s something a little suspicious about this (efficiency-wise)

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 10

Certainty-Equivalent (CE) Learning
Idea: Use your data to estimate the underlying
Markov system, instead of trying to estimate J
directly.

S1(r=0) S2(r=0) S3(r=4) S2(r=0) S4(r=0) S5(r=0)

What’re the estimated J values?

Estimated Markov System:

S1

rest = 0

S4

rest = 0
S5

rest = 0

S3

rest = 4
S2

rest = 0

You draw in the
transitions +
probs

6

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 11

C.E. Method for Markov Systems
Initialize:

Count[S i] = 0 #Times visited S i
SumR[S i] = 0 Sum of rewards from S i

Trans[Si,Sj] = 0 #Times transitioned from S i Sj

When we are in state S i , and we receive reward r , and we
move to S j …

Count[S i] Count[S i] + 1
SumR[S i] SumR[S i] + r

Trans[Si,Sj] Trans[S i,Sj] + 1

Then at any time
rest(Sj) = SumR[S i] / Count[S i]

Pest
ij = Estimated Prob(next = Sj | this = S i)
= Trans[S i,Sj] / Count[S i]

∀Si

∀Sj

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 12

C.E. for Markov Systems
(continued) …

So at any time we have
rest(Sj) and Pest (next=S j | this=S i)
∀SiSj = Pest

ij

So at any time we can solve the set of linear equations

() () () ()j
est

ij
est

i
est

i
est

j

r SJSSPSSJ
S
∑+= γ

[In vector notation,
Jest = rest + ?PestJ

=> Jest = (I-?Pest)-1rest

where Jest rest are vectors of length N
Pest is an NxN matrix
N = # states]

7

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 13

C.E. Online Economics
Memory: O(N2)
Time to update counters: O(1)
Time to re-evaluate Jest

• O(N3) if use matrix inversion
• O(N2kCRIT) if use value iteration and we need

kCRIT iterations to converge
• O(NkCRIT) if use value iteration, and kCRIT to

converge, and M.S. is Sparse (i.e. mean #
successors is constant)

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 14

Certainty Equivalent Learning

Memory use could be O(N2) !

And time per update could be O(NkCRIT) up to
O(N3) !

Too expensive for some people.

Prioritized sweeping will help, (see later), but first
let’s review a very inexpensive approach

CO
MP

LA
IN

T

8

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 15

Why this obsession with
onlineiness?

I really care about supplying up-to-date Jest

estimates all the time.

Can you guess why?

If not, all will be revealed in good time…

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 16

But instead of re-solving for Jest, do much less work.
Just do one “backup” of

Less Time: More Data
Limited Backups

§ Do previous C.E. algorithm.
§ At each time timestep we observe S i(r) S j and update

Count[S i], SumR[S i], Trans[S i,Sj]
§ And thus also update estimates

()ij

est

ij

est

i
r Soutcomes P and ∈∀

[]i
est SJ

[] []j
j

estest
ij

est
i

est
i

r SJPSJ ∑+← γ

9

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 17

“One Backup C.E.” Economics
Space : O(N2)

Time to update statistics : O(1)

Time to update Jest : O(1)

v Good News: Much cheaper per transition

v Good News: Contraction Mapping proof (modified)
promises convergence to optimal

v Bad News: Wastes data

NO IMPROVEMENT THERE!

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 18

Prioritized Sweeping

[Moore + Atkeson, ’93]
Tries to be almost as data-efficient as full CE but not
much more expensive than “One Backup” CE.

On every transition, some number (ß) of states may
have a backup applied. Which ones?

• The most “deserving”
• We keep a priority queue of which states have

the biggest potential for changing their Jest(Sj)
value

10

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 19

Where Are We?
Trying to do online Jest prediction from streams
of transitions

0(1)0(Nso)Prioritized
Sweeping

0(1)0(Nso)One Backup C.E.
Learning

0(NsoNs)
0(NsokCRIT)

0(Nso)Full C.E.
Learning

0()0(Ns)Supervised
Learning

Jest Update CostSpace

__1__
log(1/?)

Nso= # state-outcomes (number of arrows on the M.S. diagram)

Ns= # states What Next ?
Sample Backups !!!

D
ata E

fficiency:

• •

• •

• •

• •

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 20

Temporal
Difference
Learning

Only maintain a Jest array…
nothing else

So you’ve got
Jest (S1) Jest (S2) , ··· Jest (SN)

and you observe
Si

r Sj

what should you do?
Can You Guess ?

[Sutton 1988]

A transition from i that receives
an immediate reward of r and
jumps to j

11

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 21

TD Learning

Si
r Sj

We update =
We nudge it to be closer to expected future rewards

()i
est SJ

() () ()
[]

() () ()[]

SJ SJ1

SJ1SJ

α

γαα

α

α

j
est

i
est

i
est

i
est

r ++−=

+−←
Expected future

rewards

is called a “learning rate” parameter. (See
“?” in the neural lecture)

W
E

IG
H

TE
D

S
U

M

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 22

Simplified TD Analysis

• Suppose you always begin in S0

• You then transition at random to one of M places. You don’t know the
transition probs. You then get a place-dependent reward (unknown in
advance).

• Then the trial terminates.
Define J*(S0)= Expected reward

Let’s estimate it with TD

S0

r1= ?

r2= ?

rM= ?

r=0

P1=?

P2=?

PM=?

TERMINATE

TERMINATE

TERMINATE

:

12

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 23

Define J*(S0) = J* = E[rt]

S0

r(1)

r(2)

r(N)r=0

p(1)

p(2)

p(N)

·
·
·

r(k) = reward of k’th terminal
state

p(k) = prob of k’th terminal
state

We’ll do a series of trials. Reward on t’th
trail is rt

[] () () [][]tt
k

n

k

k
t oft independen isr Note rpr

1
Ε∑=Ε=

=

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 24

Let’s run TD-Learning, where

Jt = Estimate Jest(S0) before the t’th trial.

From definition of TD-Learning:

Jt+1 = (1-a)Jt + art

Useful quantity: Define

()[]
() ()()2

1

22

JrP

Jr reward of Variance

∗

=

∗

−∑=

−Ε==

kM

k

k

tσ

13

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 25

Remember J* = E[rt], s2 = E[(rt-J*)2]
Jt+1 = art + (1-a)Jt

[]
()[]

() []

[] ∗

∞→

∗

∗

∗
+

=Ε

−Ε−=

−−+Ε=

=−Ε

JJlim

Thus...
JJ1

JJ1

JJ 1

tt

t

tt

t

r

α

αα

Is this
impressive??

W
 H

 Y
 ?

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 26

Remember J* = E[rt], s 2 = E[(rt-J*)2]
Jt+1 = art + (1-a)Jt

Write St = Expected squared error between
Jt and J* before the t’th iteration

St+1 = E[(Jt+1-J*)2]

= E[(art+(1-a)Jt - J*)2]

= E[(a[rt-J*]+(1-a)[Jt - J*])2]

= E[a2(rt-J*)2+a(1-a)(rt-J*)(Jt - J*)+(1-a)2(Jt - J*)2]

= a2E[(rt-J*)2]+a(1-a)E[(rt-J*)(Jt - J*)]+(1-a)2E[(Jt - J*)2]

=

= a2s 2+(1-a)2St WHY?

14

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 27

And it is thus easy to show that ….

• What do you think of TD learning?

• How would you improve it?

()[]
)2(

JJlimS lim
2

2

α
ασ

−
=−Ε= ∗

∞→∞→
t

t
t

t

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 28

Decaying Learning Rate
[Dayan 1991ish] showed that for General TD
learning of a Markow System (not just our simple
model) that if you use update rule

() ()[] () ()i
est

tj
est

iti
est r SJ1SJSJ αγα −++←

then, as number of observations
goes to infinity
PROVIDED
• All states visited 8 ly often
•

•

() () iii
est ∀→ ∗ SJSJ

∑ ∞<

∑ ∞=

∞

=

∞

=

1

2

1

t
t

t
t

α

α

∑

∑

=

=

<∀∃

>∃∀

T

t
t

T

t
t

kk

kk

1

2

1

 T..

means This

 .T.

means This

α

α

15

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 29

Decaying Learning Rate
This Works: at = 1/t
This Doesn’t: at = a0

This Works: at = ß/(ß+t) [e.g. ß=1000]

This Doesn’t: at = ßat-1 (ß<1)
IN OUR EXAMPLE….USE at = 1/t
Remember [] []

() ()
()





∑ +=+=

−=

−+=−+=

−Ε=Ε=

=
++

+

∗∗

t

i
ttttt

tt

ttttttt

tt

t

t
tt

1
011

1

22

Jr
1

J so CrC

 thatsee llyou' and J1C Write

J11r
1

J1rJ

)Jr(,rJ

αα

σ

And…

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 30

Decaying Learning Rate con’t…

… ()[] ()

()[] 0J-Jlim ultimately so,

J-J
J-J

2

2
0

2
2

=Ε

+
=Ε

∗

∞→

∗
∗

tt

t t
σ

16

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 31

A Fancier TD…
Write S[t] = state at time t
Suppose a = 1/4 ? = 1/2
Assume Jest(S23)=0 Jest (S17)=0 Jest (S44)=16
Assume t = 405 and S[t] = S23

Observe S23 S17 with reward 0
Now t = 406, S[t] = S17, S[t-1] = S23

Jest (S23)= , Jest (S17)= , Jest (S44)=
Observe S17 S44

Now t = 407, S[t] = S44
Jest (S23)= , Jest (S17)= , Jest (S44)=
INSIGHT: Jest (S23) might think

I gotta get me some of that !!!

(r=0)

(r=0)

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 32

TD(?) Comments
TD(?=0) is the original TD
TD(?=1) is almost the same as supervised learning (except it

uses a learning rate instead of explicit counts)
TD(?=0.7) is often empirically the best performer
• Dayan’s proof holds for all 0=?=1
• Updates can be made more computationally efficient with

“eligibility” traces (similar to O.S.L.)
• Question:
vCan you invent a problem that would make TD(0) look

bad and TD(1) look good?
vHow about TD(0) look good & TD(1) bad??

17

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 33

Learning M.S. Summary

• •0
0(Ns)TD(?) , 0<?=1

• •0(1)0(Ns)TD(0)

• •0(1)0(Nso)Prioritized Sweeping

• •0(1)0(Nso)One Backup C.E.
Learning

• •0(NsoNs)
0(NsokCRIT)

0(Nso)Full C.E. Learning

• •0
0(Ns)Supervised Learning

Data
Efficiency

J Update
Cost

Space
M

O
D

E
L-

B
A

S
E

D
M

O
D

E
L

FR
E

E

















γ
1log

1

















γλ
1log

1

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 34

Learning Policies
for MDPs

See previous lecture
slides for definition of and
computation with MDPs.

The Heart
of

REINFORCEMENT

Learning

state

18

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 35

The task:

World: You are in state 34.
Your immediate reward is 3. You have 3 actions.

Robot: I’ll take action 2.
World: You are in state 77.

Your immediate reward is -7. You have 2 actions.
Robot: I’ll take action 1.
World: You’re in state 34 (again).

Your immediate reward is 3. You have 3 actions.
The Markov property means once you’ve selected an
action the P.D.F. of your next state is the same as the
last time you tried the action in this state.

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 36

The “Credit Assignment” Problem

Yippee! I got to a state with a big reward! But which of my
actions along the way actually helped me get there??
This is the Credit Assignment problem.
It makes Supervised Learning approaches (e.g. Boxes
[Michie & Chambers]) very, very slow.
Using the MDP assumption helps avoid this problem.

“ = 100,“ “ “ 26,

“ = 2“ = 0,“ “ “ 54,

“ = 2“ = 0,“ “ “ 13,

“ = 1“ = 0,“ “ “ 21,

“ = 1“ = 0,“ “ “ 21,

“ = 1“ = 0,“ “ “ 22,

“ = 4“ = 0,“ “ “ 39,

action = 2reward = 0,I’m in state 43,

19

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 37

MDP Policy Learning

• We’ll think about Model-Free in a moment…

• The C.E. methods are very similar to the MS case, except now do
value-iteration-for-MDP backups

• •0(ßN?0)0(NsAo)Prioritized
Sweeping

• •0(N?0)0(NsAo)One Backup
C.E. Learning

• •0(NsAokCRIT)0(NsAo)Full C.E.
Learning

Data
Efficiency

Update CostSpace

() () ()
() 











+= ∑

∈ ij

j
est

ij
estest

i
a

i
est a

SSUCCSS

SJ,SSPrmaxSJ γ

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 38

Choosing Actions
We’re in state Si

We can estimate ri
est

“ “ “ Pest(next = S j | this = S i , action a)
“ “ “ Jest (next = S j)
So what action should we choose ?

• Any problems with these ideas?
• Any other suggestions?
• Could we be optimal?

() ()

random :2IDEA

SJ,SSPrmaxarg :1IDEA

=









′+= ∑

′

a

aa
j

j
est

ij
est

i
a

γ

20

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 39

Model-Free R.L.
Why not use T.D. ?
Observe

update

Si a Sj

r

() ()() () ()i
est

j
est

ii
est SJ1SJr SJ αγα −++←

What’s wrong with this?

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 40

Q-Learning: Model-Free R.L.
[Watkins, 1988]

Define
Q*(Si,a)= Expected sum of discounted future

rewards if I start in state S i, if I then take action a,
and if I’m subsequently optimal

Questions:
Define Q*(S i,a) in terms of J*

Define J*(Si) in terms of Q*

21

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 41

Q-Learning Update

() () ()
()

∑
∈

∗

′

∗ ′+=
ij

aQaQ j
a

iji
SSUCCSS

,Smax,SSPrS, αγ

() () () ()aQaQaQ i
est

j
est

aii
est ,S1,Smaxr,S 1 αγα −+



 +←

′

Note that

In Q-learning we maintain a table of Qest values instead
of Jest values…

When you see S i Sj do…
reward

action a

This is even cleverer than it looks: the Qest values are
not biased by any particular exploration policy. It
avoids the Credit Assignment problem.

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 42

Q-Learning: Choosing Actions
Same issues as for CE choosing actions

• Don’t always be greedy, so don’t always choose:
• Don’t always be random (otherwise it will take a long time

to reach somewhere exciting)

• Boltzmann exploration [Watkins]

Prob(choose action a)

• Optimism in the face of uncertainty [Sutton ’90, Kaelbling
’90]
Ø Initialize Q-values optimistically high to encourage exploration

Ø Or take into account how often each s,a pair has been tried

()asi
a

,Q maxarg

()








−∝

t

est as
K

,Q
exp

22

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 43

Q-Learning Comments
• [Watkins] proved that Q-learning will eventually

converge to an optimal policy.

• Empirically it is cute

• Empirically it is very slow

• Why not do Q(?) ?

ØWould not make much sense [reintroduce the credit
assignment problem]

ØSome people (e.g. Peng & Williams) have tried to work
their way around this.

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 44

If we had time…
• Value function approximation
ØUse a Neural Net to represent Jest [e.g. Tesauro]
ØUse a Neural Net to represent Qest [e.g. Crites]
ØUse a decision tree

…with Q-learning [Chapman + Kaelbling ’91]
…with C.E. learning [Moore ’91]
…How to split up space?

• Significance test on Q values [Chapman +
Kaelbling]

• Execution accuracy monitoring [Moore ’91]
• Game Theory [Moore + Atkeson ’95]
• New influence/variance criteria [Munos ’99]

23

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 45

If we had time…
• R.L. Theory

ØCounterexamples [Boyan + Moore], [Baird]

ØValue Function Approximators with Averaging will
converge to something [Gordon]

ØNeural Nets can fail [Baird]

ØNeural Nets with Residual Gradient updates will
converge to something

ØLinear approximators for TD learning will converge
to something useful [Tsitsiklis + Van Roy]

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 46

What You Should Know
• Supervised learning for predicting delayed rewards
• Certainty equivalent learning for predicting delayed

rewards
• Model free learning (TD) for predicting delayed

rewards
• Reinforcement Learning with MDPs: What’s the

task?
• Why is it hard to choose actions?
• Q-learning (including being able to work through

small simulated examples of RL)

