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Prob(next state = S;|this state = S,) = 0.8 etc...
What is expected sum of future rewards (discounted) ?

% t . U
Eca 9'REH)® | so]=sg
€et=0 4] u

Just Solve It! We use standard Markov System Theory
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Learning Delayed Rewards...
S, l= g? S, l= E? S, l= E?
S, l= E? Ss l= E? Se l= E?

All you can see is a series of states and rewards:
S;1(R=0) =S,(R=0) =54(R=4) —S,(R=0) =S ,(R=0)—>S5(R=0)
Task: Based on this sequence, estimate J*(S;),J*(S,):--J*(S¢)
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Idea 1: Supervised Learning M

S1(R=0) 5,(R=0) ~S4(R=4) S,(R=0) 5,(R=0) " S4(R=0)

At t=1 we were in state S; and eventually got a long term discounted
reward of 0+7?0+724+7?30+?40...= 1

Att=2 in state S, Itdr =2 Att=5instate S, Itdr=0

Att=3in state S; Itdr=4 Att=6 in state Sg Itdr =0

Att=4 instate S, Itdr=0

State Observations Mean LTDR
of LTDR

S 1 1 —=Jest(g
T - - \— 17
S 2 0 1 —=Jest(g )
Z = = d \~27
S A A —=Jestyg )
3 T T <357
S Q Q —Jest(s )
3 47
S Q Q =Jest(g )
hd \—07
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Supervised Learning ALG
* Watch a trajectory
S[0] r[0] S[1] r[1] -~ S[T]r[T]
« Fort=0,1, .- T, compute J[t] = 5 g'r[t+i]

« Compute @ men velue of Jt] )
J*(s) = damong al transitio nsbeginning -
& instate S onthe trajectory

Let MATCHES(S ) ={|jt]= S}, then define

LAY
y Jest S = tt MATCHES §
* You're done! (s) MATCHES(S )
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Supervised Learning ALG
for the timid

If you have an anxious

A~ N . _
@ @ personality you may be worried
= = about edge effects for some of

AN the final transitions. With large

trajectories these are negligible.
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Online Supervised Learning
Initialize: Count[S]=0 " S,
SumJ[S;|=0 " S;
Eligibility[S] =0 " S,
Observe:
When we experience S; with reward r
do this:
"] Elg[S;]<—7Elig[S]
Elig[S;]<—Elig[S;] + 1
" j SumJ[S;l<—SumJ[S J+rxElig[S]]
Count[S;]<—Count[S] + 1

Then at any time,
Jes(S;)= SumJ[S J/Count[S|]
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Online Supervised Learning
Economics

Given N states S; -+ S, OSL needs O(N) memory.

Each update needs O(N) work since we must update all
Elig[ ] array elements @

(0

Idea: Be sparse and only update/process Elig|[ ]
elements with values >?for tiny ?

There are only |Og§<g/log§}ég

such elements

—/

Easy to prove:

AsT® ¥ ,F*(S)® J(S) "S
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Online Supervised Legyiing

S1(r=0) 7>S,(r=0) 7>S3(r=4) 75,(r=0) 75,(r=0) ~S4(r=0)

State | Observations of ‘]A(Si)
LTDR
S, 1 1
S, 2,0 1
S, 4 4
S, 0 0
Ss 0 0

There’s something a little suspicious about this (efficiency-wise)
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Certainty-Equivalent (CE) Learning

Idea: Use your data to estimate the underlying
Markov system, instead of trying to estimate J
directly
—>, -, —= —= —>
S1(r=0) "S,(r=0) “S3(r=4) "S,(r=0) "S,(r=0) "Ss(r=0)

. You draw in the
Estimated Markov System: transitions +

probs

What're the estimated J values?
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C.E. Method for Markov Systems

Initialize:

Count[S;]=0 vs, #Times visited S,

SumR[S] =0 ) Sum of rewards from S,
Trans[S;,S)] =0 S #Times transitioned from S; 5,

When we are in state S; , and we receive reward r , and we
moveto S; ...

Count[S;] <Count[S]] +1

SUMR[S;] <SumR[S;] +r
Trans[S;,S] < Trans[S;, S]] + 1

Then at any time
res(S)) = SumR[S] / Count[S;]
pest, = Estimated Prob(next = S; | this = S; )
= Trans[S;;S;] / Count[S|]
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C.E. for Markov Systems
(continued) ...

So at any time we have
res(S;) and Pest(next=S; | this=S; )
" S;S; = pest;
So at any time we can solve the set of linear equations

r*(8)=r=(s)+oa P=(s)|s p=(s))

[In vector notation,
Jest = rest + ?PeStJ
=> Jest= (|_?pest)—1rest
where Jest rest are vectors of length N
Pest is an NxN matrix
N = # states |
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C.E. Online Economics
Memory: O(N2?)
Time to update counters: O(1)
Time to re-evaluate Jest
* O(N3) if use matrix inversion

* O(N%kcg7) if use value iteration and we need
ket iterations to converge

* O(Nkcg) if use value iteration, and kg7 to
converge, and M.S. is Sparse (i.e. mean #
SuUCCessors is constant)
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Certainty Equivalent Lgsrning

Memory use could be O(N?)!

And time per update could be O(Nkqg;r) up to
O(N3) !

Too expensive for some people.

Prioritized sweeping will help, (see later), but first
let's review a very inexpensive approach
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Why this obsession with
onlineiness?

| really care about supplying up-to-date Jest
estimates all the time.

Can you guess why?

If not, all will be revealed in good time...
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Less Time: More Data
Limited Backups

= Do previous C.E. algorithm.

= At each time timestep we observe Si(r)esj and update
Count[S;], SUmR[S ], Trans[S;S|]
= And thus also update estimates

r” and P~ "1 outcomes(S))

But instead of re-solving for J®st, do much less work.
Just do one “backup” of J= [S|]

=[]~ r=+ga PEI=[s)]
]
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“One Backup C.E.” Economics
Space : O(N?) NOTmE';RE?VEmENT
Time to update statistics : O(1)
Time to update Jést : O(1) @
% Good News: Much cheaper per transition

% Good News: Contraction Mapping proof (modified)
promises convergence to optimal

«» Bad News: Wastes data
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Prioritized Sweeping

[Moore + Atkeson, 93]

Tries to be almost as data-efficient as full CE but not
much more expensive than “One Backup” CE.

On every transition, some number ([3) of states may
have a backup applied. Which ones?

* The most “deserving”

* We keep a priority queue of which states have
the biggest potential for changing their Jes{(S))
value
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Where Are We?

Trying to do online Jest prediction from streams

of transitions
Space Jest Update Cost
Supervised O(Ng) (=3 ) ..
Learning -
Full C.E. 0(Nso) O(NsoNs) ..
Learning O(Nsgkcrr) N
One Backup C.E. [0(Ng,) 0(1) .
Learning N
Prioritized O(Nso) 0(1) -
. ~—

Sweeping

N,= # state-outcomes (number of arrows on the M.S. diagram)

N,= # states What Next ?

Sample Backups !!!
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Temporal [Sutton 1988]
Difference

Learning

Only maintain a Jest array...
nothing else

So you've got
Jest (S;) JeSt(S,) , - Jest(Sy)

an immediate reward of r and
what should you do? Jumps to |

and you observe
A transition from i that receives
SHE]

Can You Guess ?
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TD Learning

S r/\sj
et
We update = J (S.)
We nudge it to be closer to expected future rewards

SUM

3%(s)- [1-a)3=(s)+
Expected future ]

a [ rewards

=(1-a)0=(s)+ alr +=(S, |

a is called a “learning rate” parameter. (See
“?” in the neural lecture)

WEIGHTED
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Simplified TD-Analysis

, TERMINATE
» TERMINATE

‘ TERMINATE
* Suppose you always begin in S,

* You then transition at random to one of M places. You don’t know the
transition probs. You then get a place-dependent reward (unknown in
advance).

* Then the trial terminates.

Define J*S,)= Expected reward

Let’s estimate it with TD
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rk = reward of k’th terminal
state

p® = prob of k'th terminal
state

We'll do a series of trials. Reward on t'th
trail is r;

=Hr]=4p“r® [NoteE[r Jisindependent of t]
k=1
Define J*(Sy) = J* = E[r]
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Let’s run TD-Learning, where

J, = Estimate Jes{(S,) before the t'th trial.

From definition of TD-Learning:

J..=(1-a)l + ar,
1 N\ 7 1 U

Useful quantity: Define

SZ:Vwmmemrwwm:Eh-IY]

=3 P g f
k=1
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Remember J* = E[r], s? = E[(r-3%)7]
Jug = ar + (1-a)d;

E|_‘-Jt+1 - ‘J*J =
= Har, +(1-a)J, - J]

WHY?

=(1-a)g,- ]
Thus...
_ : Is this
lim E[Jt_ =J impressive??

t® ¥
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Remember J*=E[r], s?=E[(r,-J*)?]
Jug = an + (1-a)d,

Write S, = Expected squared error between
J; and J* before the t'th iteration

St+1 = E[(‘]t+1"]*)2]
= E[(ar+(1-a)J; - 3%)7]
= E[(alr-J*+(1-a)3; - ')
= E[a?(r0*)+a(L-a) (-0, - 3)+(1-22 (- V)

= a?E[(rrJ*)?]+a(1-a)E[(r-0%)(; - J)]+(1-a)*E[(J, - J*)2

= a’s?+(1-a)?S,
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And it is thus easy to show that ....

«2|_ as
@“J)]_EZES

2

imS =limE

t® ¥ t® ¥

* What do you think of TD learning?

* How would you improve it?
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Decaying Learning Rate

[Dayan 1991ish] showed that for General TD
learning of a Markow System (not just our simple
model) that if you use update rule

‘]eSt(Su)_' atl.ri +g](ﬂ(sj)J+(1- at)‘JeSt( |)

then, as number OJ; bservatjons
goes to infinity ESj@ J zS,r} i

PROVIDED
.. This means
* All states visited 8 ly often
: " k$T.§a, >k
e A, =¥ « $ qa >
=1 This means
Y :
« 3a’<¥ - s 7.8 a2
t=1
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Decaying Learning Rate
This Works: a, = 1/t

This Doesn'’t: a, = a,
This Works: a, = R/(3+t) [e.g. 3=1000]
This Doesn'’t: a, = Ba, ; (3<1)

IN OUR EXAMPLE....USE a,_= 1/t |
Remember J = E[rt], s?= El(rt - j)zj

‘]t+1 =alh +(1' at)‘]t :%rt +(1' }t/)]t

Write C, =(t-1)J, and you'll seethat

Cu=r+C 0 J,, = —Aar+Ju

t6a Q And...
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Decaying Learning Rate con't...

E[J ‘])Zl s +(J Y

so, ultimately [im E

t® ¥

JJIO
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A Fancier TD...

S[t] = state at time' t
a=14 ?=1/2
Assume Jes{(S,;)=0 Jest(S,,)=0 Jest(S,,)=16
Assume t=405 and S[t] =S,
Observe 823()02\817 with reward O

Now t=406, S[f]=S;s S[t-1]=S,s
Je(Spa)= , JU(Sq7)= , I (S40)=
Observe S,~ S,

Now t=407, S[t]=S44
Jest(Sps)= , JeSH(Sy7)= , IS (S )=
INSIGHT: Je%é) might think

| gotta get me some of that !!!
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TD(?) Comments

TD(?=0) is the original TD

TD(?=1) is almost the same as supervised learning (except it
uses a learning rate instead of explicit counts)

TD(?=0.7) is often empirically the best performer

» Dayan'’s proof holds for all 0=7=1

» Updates can be made more computationally efficient with
“eligibility” traces (similar to O.S.L.)

e Question:

% Can you invent a problem that would make TD(0) look
bad and TD(1) look good?

“*How about TD(0) look good & TD(1) bad??
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Learning M.S. Summary

Space [J Update
Cost

Supervised Learning  |O(N,) €1 °
A 0 §'°g;gé -
i{ Full C.E. Learning 0(Ngo) 0(NgoNg) ..
@ O(Nsgker) | NS
& |One Backup C.E. 0(Nsgo) 0(1) ..
g Learning N

Prioritized Sweeping  [0(Ng,) 0(1) e
i TD(0) 0N |0(D) .
w RN
—
L 3] o]
a | TD(?),0<?=1 |[O0(Ny) ¢ LT
3 oFg |
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Learning Policies
for MDPs

See previous lecture
slides for definition of and

computation with MDPs.

\
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The Heart

reINFOR CEMent

Learning
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The task:

World: You are in state 34.

Your immediate reward is 3. You have 3 actions.
Robot: I'll take action 2.
World: You are in state 77.

Your immediate reward is -7. You have 2 actions.
Robot: I'll take action 1.
World: You're in state 34 (again).

Your immediate reward is 3. You have 3 actions.
The Markov property means once you've selected an
action the P.D.F. of your next state is the same as the
last time you tried the action in this state.
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The “Credit Assignment” Problem

I'min state 43, reward =0, action=2

“39, * =0 * =4
“ 2, o+ =0, * =1
“ 2, % =0, * =1
“ 21, % =0, * =1
“13 % =0, * =2
“ 54, % =0, * =2
“ 26, =100,

Yippee! | got to a state with a big reward! But which of my
actions along the way actually helped me get there??

This is the Credit Assignment problem.

It makes Supervised Learning approaches (e.g. Boxes
[Michie & Chambers]) very, very slow.

Using the MDP assumption helps avoid this problem.
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MDP Policy Learning

Space Update Cost
Full C.E. 0(Nspo) O(NsaokeriT) . .
Learning __
One Backup  [0(Ngao) 0(N,() ..
C.E. Learning N
Prioritized 0(Nspo) 0(BN-) ..
Sweeping —

« We'll think about Model-Free in a moment...
» The C.E. methods are very similar to the MS case, except now do
value-iteration-for-MDP backups
est e est L pest est \
3(§)=mxg=+g  § P(ss.aP=(s )
e S;Tsuccs(s)
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Choosing Actions

We're in state S;

We can estimate  rest

©oo “ Pes(next = S; | this = S; , action a)
©oo “ Jest(next =S, )

So what action should we choose ?

IDEA 1: a=argmaxg; +98 P=(S IS, ad(s)
a8 j
IDEA 2: a =random

* Any problems with these ideas?
* Any other suggestions?
* Could we be optimal?

(e} enl g
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Model-Free R.L.

Why not use T.D. ?
Observe
(I (&
update
3%(s)~ alr +g=(s )+ (- a)(s)

What's wrong with this?
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Q-Learning: Model-Free R.L.

[Watkins, 1988]
Define

Q*(S;,a)= Expected sum of discounted future
rewards if | start in state S,, if | then take action a,
and if I'm subsequently optimal

Questions:
Define Q*(S;,a) in terms of J*

Define J*(S;) in terms of Q*
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Q-Learning Update
Note that
Q(sa)=r+g & ( )P(sj|s,,a)ma%xq*(sj,aa)
s succs (s

In Q-learning we maintain a table of Q®stvalues instead
of Jestvalues...

When you see Si/\Sj do...
Q*(S.a)- agrﬁg max Qﬂ(S,-,a1E+(l- a)Q=(s .a)

This is even cleverer than it looks: the Qest values are
not biased by any particular exploration policy. It
avoids the Credit Assignment problem.
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Q-Learning: Choosing Actions

Same issues as for CE choosing actions
- Don't always be greedy, so don’t always choose: #9M& s.a)
* Don't always be random (otherwise it will take a long time
to reach somewhere exciting)

* Boltzmann exploration [Watkins]

Q*(s.a)0

b <)
Prob(choose action a expe-
( ) H Pg K -

* Optimism in the face of uncertainty [Sutton '90, Kaelbling
'90]
Initialize Q-values optimistically high to encourage exploration
Or take into account how often each s,a pair has been tried
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Q-Learning Comments

[Watkins] proved that Q-learning will eventually
converge to an optimal policy.

Empirically it is cute

Empirically it is very slow
Why not do Q(?) ?

» Would not make much sense [reintroduce the credit
assignment problem]

» Some people (e.g. Peng & Williams) have tried to work
their way around this.
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If we had time...

» Value function approximation
» Use a Neural Net to represent Jést [e.g. Tesauro]
» Use a Neural Net to represent Q°st [e.g. Crites]
» Use a decision tree
...with Q-learning [Chapman + Kaelbling '91]
...with C.E. learning [Moore '91]
...How to split up space?

Significance test on Q values [Chapman +
Kaelbling]

Execution accuracy monitoring [Moore '91]
Game Theory [Moore + Atkeson '95]
New influence/variance criteria [Munos '99]
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If we had time...
* R.L. Theory
» Counterexamples [Boyan + Moore], [Baird]

» Value Function Approximators with Averaging will
converge to something [Gordon]

» Neural Nets can fail [Baird]

» Neural Nets with Residual Gradient updates will
converge to something

» Linear approximators for TD learning will converge
to something useful [Tsitsiklis + Van Roy]
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What You Should Know

» Supervised learning for predicting delayed rewards

» Certainty equivalent learning for predicting delayed
rewards

* Model free learning (TD) for predicting delayed
rewards

* Reinforcement Learning with MDPs: What's the
task?

* Why is it hard to choose actions?

* Q-learning (including being able to work through
small simulated examples of RL)
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