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Learning

Note to other teachers and users of 
these slides. Andrew would be delighted 
if you found this source material useful in 
giving your own lectures. Feel free to use 
these slides verbatim, or to modify them 
to fit your own needs. PowerPoint 
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message, or the following link to the 
source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . 
Comments and corrections gratefully 
received. 
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Predicting Delayed Rewards IN A 
DISCOUNTED MARKOV SYSTEM

Prob(next state = S5|this state = S4) = 0.8 etc…
What is expected sum of future rewards (discounted) ?
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Just Solve It! We use standard Markov System Theory
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Learning Delayed Rewards…

Task: Based on this sequence, estimate J*(S1),J*(S2)···J*(S6)

R=?

S1 ?

?

?
R=?

S3 ?

?

?

R=?

S4 ?

?

?
R=?

S5 ?

?

?

R=?

S2 ?

?

?

R=?

S6 ?

?

?

?

S1(R=0)    S2(R=0)    S3(R=4)    S2(R=0)    S4(R=0)    S5(R=0)

All you can see is a series of states and rewards:
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Idea 1: Supervised Learning

=Jest(S5)00S5

=Jest(S4)00S4

=Jest(S3)44S3

=Jest(S2)12 , 0S2

=Jest(S1)11S1

Mean LTDRObservations 
of LTDR

State

Assume
?=1/2

S1(R=0)    S2(R=0)    S3(R=4)    S2(R=0)    S4(R=0)    S5(R=0)

At t=1 we were in state S1 and eventually got a long term discounted 
reward of 0+?0+?24+?30+?40…= 1

At t=2 in state S2 ltdr = 2 At t=5 in state S4 ltdr = 0
At t=3 in state S3 ltdr = 4 At t=6 in state S5 ltdr = 0
At t=4 in state S2 ltdr = 0
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Supervised Learning ALG
• Watch a trajectory

S[0] r[0] S[1] r[1] ···· S[T]r[T]
• For t=0,1, ··· T , compute

• Compute

• You’re done!
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Supervised Learning ALG
for the timid

If you have an anxious 
personality you may be worried 
about edge effects for some of 
the final transitions.  With large 
trajectories these are negligible.

• •
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Online Supervised Learning
Initialize:  Count[Si] = 0   ∀Si

SumJ[S i] = 0   ∀Si
Eligibility[Si] = 0   ∀Si

Observe:
When we experience S i with reward r

do this:
∀j    Elig[S j]      ?Elig[S j]

Elig[S j]     Elig[S j] + 1
∀j  SumJ[S j]     SumJ[S j]+rxElig[Sj]

Count[Si]     Count[Si] + 1
Then at any time,
Jest(Sj)= SumJ[S j]/Count[Sj]
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Online Supervised Learning 
Economics

Given N states  S1 ··· SN ,  OSL needs O(N) memory.
Each update needs O(N) work since we must update all 

Elig[  ] array elements
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Easy to prove:

Idea:  Be sparse and only update/process Elig[ ] 
elements with values >? for tiny ?
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Online Supervised Learning
Let’s grab OSL off the street, bundle it into a 
black van, take it to a bunker and interrogate it 
under 600 Watt lights.

00S5

00S4

44S3

12 , 0S2

11S1

 ̂ 
J(Si)

Observations of 
LTDR

State

CO
MP

LA
IN

T

S1(r=0)    S2(r=0)     S3(r=4)    S2(r=0)    S4(r=0)    S5(r=0)

There’s something a little suspicious about this (efficiency-wise)
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Certainty-Equivalent (CE) Learning
Idea:  Use your data to estimate the underlying 
Markov system, instead of trying to estimate J 
directly.

S1(r=0)    S2(r=0)     S3(r=4)    S2(r=0)    S4(r=0)    S5(r=0)

What’re the estimated J values?

Estimated Markov System:

S1

rest = 0

S4

rest = 0
S5

rest = 0

S3

rest = 4
S2

rest = 0

You draw in the 
transitions + 
probs
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C.E. Method for Markov Systems
Initialize:

Count[S i] = 0 #Times visited S i
SumR[S i] = 0 Sum of rewards from S i

Trans[Si,Sj] = 0 #Times transitioned from S i Sj

When we are in state S i , and we receive reward r , and we 
move to S j …

Count[S i]    Count[S i] + 1
SumR[S i] SumR[S i] + r

Trans[Si,Sj]     Trans[S i,Sj] + 1

Then at any time
rest(Sj) = SumR[S i] / Count[S i] 

Pest
ij = Estimated Prob(next = Sj | this = S i )
= Trans[S i,Sj] / Count[S i] 

∀Si

∀Sj
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C.E. for Markov Systems 
(continued) …

So at any time we have
rest(Sj)  and  Pest (next=S j | this=S i )
∀SiSj = Pest

ij

So at any time we can solve the set of linear equations
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[In vector notation,
Jest = rest + ?PestJ

=>   Jest = (I-?Pest)-1rest

where  Jest rest are vectors of length N
Pest is an NxN matrix
N = # states ]
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C.E. Online Economics
Memory:   O(N2)
Time to update counters:   O(1)
Time to re-evaluate  Jest

• O(N3)  if use matrix inversion
• O(N2kCRIT)  if use value iteration and we need 

kCRIT iterations to converge
• O(NkCRIT)  if use value iteration, and kCRIT to 

converge, and M.S. is Sparse (i.e. mean # 
successors is constant)
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Certainty Equivalent Learning

Memory use could be  O(N2) !

And time per update could be  O(NkCRIT)  up to 
O(N3) !

Too expensive for some people.

Prioritized sweeping will help, (see later), but first 
let’s review a very inexpensive approach
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Why this obsession with 
onlineiness?

I really care about supplying up-to-date   Jest

estimates all the time.

Can you guess why?

If not, all will be revealed in good time…
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But instead of re-solving for Jest, do much less work.  
Just do one “backup” of

Less Time: More Data
Limited Backups

§ Do previous C.E. algorithm.
§ At each time timestep we observe S i(r)   S j and update 

Count[S i], SumR[S i], Trans[S i,Sj]
§ And thus also update estimates

( )ij

est

ij

est

i
r Soutcomes   P  and  ∈∀

[ ]i
est SJ

[ ] [ ]j
j

estest
ij

est
i

est
i

r SJPSJ ∑+← γ



9

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 17

“One Backup C.E.” Economics
Space  :  O(N2)

Time to update statistics  : O(1)

Time to update Jest :  O(1)

v Good News:  Much cheaper per transition

v Good News:  Contraction Mapping proof (modified) 
promises convergence to optimal

v Bad News:  Wastes data

NO IMPROVEMENT THERE!
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Prioritized Sweeping

[Moore + Atkeson, ’93]
Tries to be almost as data-efficient as full CE but not 
much more expensive than “One Backup” CE.

On every transition, some number (ß) of states may 
have a backup applied.  Which ones?

• The most “deserving”
• We keep a priority queue of which states have 

the biggest potential for changing their Jest(Sj) 
value
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Where Are We?
Trying to do online Jest prediction from streams 
of transitions

0(1)0(Nso)Prioritized 
Sweeping

0(1)0(Nso)One Backup C.E. 
Learning

0(NsoNs)
0(NsokCRIT)

0(Nso)Full C.E. 
Learning

0(         )0(Ns)Supervised 
Learning

Jest Update CostSpace

__1__
log(1/?)

Nso= # state-outcomes (number of arrows on the M.S. diagram)

Ns= # states What Next ?
Sample Backups !!!

D
ata E

fficiency:

• •

• •

• •

• •
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Temporal 
Difference 
Learning

Only maintain a Jest array…
nothing else

So you’ve got
Jest (S1)  Jest (S2) , ··· Jest (SN)

and you observe
Si

r Sj

what should you do?
Can You Guess ?

[Sutton 1988]

A transition from i that receives 
an immediate reward of r and 
jumps to j
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TD Learning

Si
r Sj

We update  =
We nudge it to be closer to expected future rewards

( )i
est SJ
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is called a “learning rate” parameter.  (See 
“?” in the neural lecture)
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Simplified TD Analysis

• Suppose you always begin in S0

• You then transition at random to one of M places.  You don’t know the 
transition probs.  You then get a place-dependent reward (unknown in 
advance).

• Then the trial terminates.
Define J*(S0)= Expected reward

Let’s estimate it with TD

S0

r1= ?

r2= ?

rM= ?

r=0

P1=?

P2=?

PM=?

TERMINATE

TERMINATE

TERMINATE

:
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Define J*(S0) = J* = E[rt]

S0

r(1)

r(2)

r(N)r=0

p(1)

p(2)

p(N)

·
·
·

r(k) = reward of k’th terminal 
state

p(k) = prob of k’th terminal 
state

We’ll do a series of trials.  Reward on t’th 
trail is rt
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k
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Let’s run TD-Learning, where

Jt = Estimate   Jest(S0) before the t’th trial.

From definition of TD-Learning:

Jt+1 = (1-a)Jt + art

Useful quantity:  Define

( )[ ]
( ) ( )( )2
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Remember J* = E[rt], s2 = E[(rt-J*)2]
Jt+1 = art + (1-a)Jt
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impressive??
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 ?
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Remember J* = E[rt],  s 2 = E[(rt-J*)2]
Jt+1 = art + (1-a)Jt

Write St = Expected squared error between
Jt and J* before the t’th iteration

St+1 = E[(Jt+1-J*)2]

= E[(art+(1-a)Jt - J*)2]

= E[(a[rt-J*]+(1-a)[Jt - J*])2]

= E[a2(rt-J*)2+a(1-a)(rt-J*)(Jt - J*)+(1-a)2(Jt - J*)2]

= a2E[(rt-J*)2]+a(1-a)E[(rt-J*)(Jt - J*)]+(1-a)2E[(Jt - J*)2]

=

= a2s 2+(1-a)2St WHY?
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And it is thus easy to show that ….

• What do you think of TD learning?

• How would you improve it?
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Decaying Learning Rate
[Dayan 1991ish] showed that for General TD
learning of a Markow System (not just our simple 
model) that if you use update rule

( ) ( )[ ] ( ) ( )i
est

tj
est

iti
est r SJ1SJSJ αγα −++←

then, as number of observations 
goes to infinity
PROVIDED
• All states visited 8 ly often
•

•

( ) ( ) iii
est ∀→ ∗ SJSJ

∑ ∞<

∑ ∞=

∞

=

∞

=

1

2

1

t
t

t
t

α

α

∑

∑

=

=

<∀∃

>∃∀

T

t
t

T

t
t

kk

kk

1

2

1

 T..

means This

 .T.

means This

α

α



15

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 29

Decaying Learning Rate
This Works:   at = 1/t
This Doesn’t: at = a0

This Works: at = ß/(ß+t)   [e.g. ß=1000]

This Doesn’t: at = ßat-1 (ß<1)
IN OUR EXAMPLE….USE at = 1/t
Remember [ ] [ ]
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Decaying Learning Rate con’t…
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A Fancier TD…
Write S[t] = state at time t
Suppose a = 1/4   ? = 1/2
Assume Jest(S23)=0   Jest (S17)=0   Jest (S44)=16
Assume t = 405   and   S[t] = S23

Observe S23 S17 with reward 0
Now   t = 406,   S[t] = S17,   S[t-1] = S23

Jest (S23)=          , Jest (S17)=         , Jest (S44)=
Observe S17 S44

Now   t = 407,   S[t] = S44
Jest (S23)=          , Jest (S17)=         , Jest (S44)=
INSIGHT: Jest (S23)  might think

I gotta get me some of that !!!

(r=0)

(r=0)
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TD(?) Comments
TD(?=0) is the original TD
TD(?=1) is almost the same as supervised learning (except it 

uses a learning rate instead of explicit counts)
TD(?=0.7) is often empirically the best performer
• Dayan’s proof holds for all 0=?=1
• Updates can be made more computationally efficient with 

“eligibility” traces (similar to O.S.L.)
• Question:
vCan you invent a problem that would make TD(0) look 

bad and TD(1) look good?
vHow about TD(0) look good & TD(1) bad??
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Learning M.S. Summary

• •0
0(Ns)TD(?) , 0<?=1

• •0(1)0(Ns)TD(0)

• •0(1)0(Nso)Prioritized Sweeping

• •0(1)0(Nso)One Backup C.E. 
Learning

• •0(NsoNs)
0(NsokCRIT)

0(Nso)Full C.E. Learning

• •0
0(Ns)Supervised Learning
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Learning Policies 
for MDPs

See previous lecture 
slides for definition of and 
computation with MDPs.

The Heart
of

REINFORCEMENT

Learning

state
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The task:

World: You are in state 34.
Your immediate reward is 3.  You have 3 actions.

Robot: I’ll take action 2.
World: You are in state 77.

Your immediate reward is -7.  You have 2 actions.
Robot: I’ll take action 1.
World: You’re in state 34 (again).

Your immediate reward is 3.  You have 3 actions.      
The Markov property means once you’ve selected an 
action the P.D.F. of your next state is the same as the 
last time you tried the action in this state.
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The “Credit Assignment” Problem

Yippee!  I got to a state with a big reward!  But which of my 
actions along the way actually helped me get there??
This is the Credit Assignment problem.
It makes Supervised Learning approaches (e.g. Boxes
[Michie & Chambers]) very, very slow.
Using the MDP assumption helps avoid this problem.

“   = 100,“    “     “   26,

“     = 2“      = 0,“    “     “   54,

“     = 2“      = 0,“    “     “   13,

“     = 1“      = 0,“    “     “   21,

“     = 1“      = 0,“    “     “   21,

“     = 1“      = 0,“    “     “   22,

“     = 4“      = 0,“    “     “   39,   

action = 2reward = 0,I’m in state 43,
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MDP Policy Learning

• We’ll think about Model-Free in a moment…

• The C.E. methods are very similar to the MS case, except now do 
value-iteration-for-MDP backups

• •0(ßN?0)0(NsAo)Prioritized 
Sweeping

• •0(N?0)0(NsAo)One Backup 
C.E. Learning

• •0(NsAokCRIT)0(NsAo)Full C.E. 
Learning

Data 
Efficiency

Update CostSpace
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Choosing Actions
We’re in state    Si

We can estimate    ri
est

“      “           “       Pest(next = S j | this = S i , action a)
“      “           “       Jest (next = S j )
So what action should we choose ?

• Any problems with these ideas?
• Any other suggestions?
• Could we be optimal?

( ) ( )
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Model-Free R.L.
Why not use  T.D. ?
Observe

update

Si a Sj

r

( ) ( )( ) ( ) ( )i
est

j
est

ii
est SJ1SJr  SJ αγα −++←

What’s wrong with this?
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Q-Learning: Model-Free R.L.
[Watkins, 1988]

Define
Q*(Si,a)= Expected sum of discounted future 

rewards if I start in state S i, if I then take action a, 
and if I’m subsequently optimal

Questions:
Define Q*(S i,a) in terms of J*

Define J*(Si) in terms of Q*
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Q-Learning Update

( ) ( ) ( )
( )

∑
∈

∗

′

∗ ′+=
ij

aQaQ j
a

iji
SSUCCSS

,Smax,SSPrS, αγ

( ) ( ) ( ) ( )aQaQaQ i
est

j
est

aii
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Note that

In Q-learning we maintain a table of Qest values instead 
of Jest values…

When you see S i Sj do…
reward

action a

This is even cleverer than it looks:  the Qest values are 
not biased by any particular exploration policy.  It 
avoids the Credit Assignment problem.
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Q-Learning: Choosing Actions
Same issues as for CE choosing actions

• Don’t always be greedy, so don’t always choose:
• Don’t always be random (otherwise it will take a long time 

to reach somewhere exciting)

• Boltzmann exploration  [Watkins]

Prob(choose action a) 

• Optimism in the face of uncertainty  [Sutton ’90, Kaelbling 
’90]
Ø Initialize Q-values optimistically high to encourage exploration

Ø Or take into account how often each s,a pair has been tried

( )asi
a

,Q maxarg
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K
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Q-Learning Comments
• [Watkins] proved that Q-learning will eventually 

converge to an optimal policy.

• Empirically it is cute

• Empirically it is very slow

• Why not do Q(?) ?

ØWould not make much sense [reintroduce the credit 
assignment problem]

ØSome people (e.g. Peng & Williams) have tried to work 
their way around this.
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If we had time…
• Value function approximation
ØUse a Neural Net to represent  Jest [e.g. Tesauro]
ØUse a Neural Net to represent Qest [e.g. Crites]
ØUse a decision tree

…with Q-learning  [Chapman + Kaelbling ’91]
…with C.E. learning  [Moore ’91]
…How to split up space?

• Significance test on Q values  [Chapman + 
Kaelbling]

• Execution accuracy monitoring  [Moore ’91]
• Game Theory  [Moore + Atkeson ’95]
• New influence/variance criteria  [Munos ’99]
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If we had time…
• R.L. Theory

ØCounterexamples  [Boyan + Moore], [Baird]

ØValue Function Approximators with Averaging will 
converge to something  [Gordon]

ØNeural Nets can fail  [Baird]

ØNeural Nets with Residual Gradient updates will 
converge to something

ØLinear approximators for TD learning will converge 
to something useful  [Tsitsiklis + Van Roy]
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What You Should Know
• Supervised learning for predicting delayed rewards
• Certainty equivalent learning for predicting delayed 

rewards
• Model free learning (TD) for predicting delayed 

rewards
• Reinforcement Learning with MDPs: What’s the 

task?
• Why is it hard to choose actions?
• Q-learning (including being able to work through 

small simulated examples of RL)


