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Sverdlovsk

•During April and 
May 1979, there 
were 77 
Confirmed 
cases of 
inhalational 
anthrax





Goals of spatial cluster 
detection

• To identify the locations, shapes, and sizes of 
potentially anomalous spatial regions.

• To determine whether each of these potential 
clusters is more likely to be a “true” cluster or 
a chance occurrence.

• In other words, is anything unexpected going 
on, and if so, where?



Disease surveillance
Given: count for each zip code

(e.g. number of Emergency Dept. 
visits, or over-the-counter drug 

sales, of a specific type)

Do any regions have sufficiently high 
counts to be indicative of an emerging 

disease epidemic in that area?

How many cases do 
we expect to see in 

each area?

Are there any regions 
with significantly more 
cases than expected?



A simple approach

• For each zip code:
– Infer how many cases we expect to see, 

either from given denominator data (e.g. 
census population) or from historical data 
(e.g. time series of previous counts).

– Perform a separate statistical significance 
test on that zip code, obtaining its p-value.

• Report all zip codes that are significant 
at some level α.

What are the potential problems?
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A simple approach

• For each zip code:
– Infer how many cases we expect to see, 

either from given denominator data (e.g. 
census population) or from historical data 
(e.g. time series of previous counts).

– Perform a separate statistical significance 
test on that zip code, obtaining its p-value.

• Report all zip codes that are significant 
at some level α.

Multiple hypothesis testing
Thousands of locations to test…

5% chance of false positive for each…

Almost certain to get large 
numbers of false alarms!

How do we bound the overall probability 
of getting any false alarms?

What are the potential problems?
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One Step of Spatial Scan

Entire area being scanned

Current region being considered

I have a population 
of 5300 of whom 53 
are sick (1%)

Everywhere else has a 
population of 2,200,000 of 
whom 20,000 are sick (0.9%)

So... is that a big deal? 
Evaluated with Score 
function.
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• Define models:
– of the null hypothesis 

H0: no attacks. 
– of the alternative 

hypotheses H1(S): 
attack in region S.

• Derive a score function
Score(S) = Score(C, B).
– Likelihood ratio:

– To find the most 
significant region:
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Example: Kulldorf’s score

Assumption: ci ~ Poisson(qbi)

H0: q = qall everywhere

H1: q = qin inside region,

q = qout outside region
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(Individually Most Powerful statistic for detecting significant increases) (but still…just an example)



The generalized spatial scan
1. Obtain data for a set of spatial locations si.
2. Choose a set of spatial regions S to search.
3. Choose models of the data under null 

hypothesis H0 (no clusters) and alternative 
hypotheses H1(S) (cluster in region S).

4. Derive a score function F(S) based on 
H1(S) and H0.

5. Find the most anomalous regions (i.e. 
those regions S with highest F(S)).

6. Determine whether each of these potential 
clusters is actually an anomalous cluster. 



1. Obtain data for a set of spatial locations si.
• For each spatial location si, we are 

given a count ci and a baseline bi.
• For example: ci = # of respiratory 

disease cases, bi = at-risk population.
• Goal: to find regions where the counts 

are higher than expected, given the 
baselines.

ci = 20,  
bi = 5000

Population-based method: Expectation-based method:
Baselines represent population, whether 

given (e.g. census) or inferred (e.g. 
from sales); can be adjusted for age, 

risk factors, seasonality, etc. 

Under null hypothesis, we expect 
counts to be proportional to baselines.

Compare disease rate (count / pop) 
inside and outside region.

Baselines represent expected counts, 
inferred from the time series of 

previous counts, accounting for day-
of-week and seasonality effects.

Under null hypothesis, we expect 
counts to be equal to baselines.

Compare region’s actual count 
to its expected count.



1. Obtain data for a set of spatial locations si.
• For each spatial location si, we are 

given a count ci and a baseline bi.
• For example: ci = # of respiratory 

disease cases, bi = at-risk population.
• Goal: to find regions where the counts 

are higher than expected, given the 
baselines.

ci = 20,  
bi = 5000

Population-based method: Expectation-based method:
Baselines represent population, whether 

given (e.g. census) or inferred (e.g. 
from sales); can be adjusted for age, 

risk factors, seasonality, etc. 

Under null hypothesis, we expect 
counts to be proportional to baselines.

Compare disease rate (count / pop) 
inside and outside region.

Baselines represent expected counts, 
inferred from the time series of 

previous counts, accounting for day-
of-week and seasonality effects.

Under null hypothesis, we expect 
counts to be equal to baselines.

Compare region’s actual count 
to its expected count.

Discussion question: When is it 
preferable to use each method?



2. Choose a set of spatial regions S to search.
• Some practical considerations:

• Set of regions should cover entire search space.
• Adjacent regions should partially overlap.

• Choose a set of regions that corresponds well with 
the size/shape of the clusters we want to detect.
• Typically, we consider some fixed shape (e.g. circle, 

rectangle) and allow its location and dimensions to vary.

Don’t search too few regions: Don’t search too many regions:

Computational infeasibility!

Overall power to detect any given 
subset of regions reduced because of 

multiple hypothesis testing.

Reduced power to detect clusters 
outside the search space.
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• Our typical approach for 

disease surveillance:
• map spatial locations to grid
• search over the set of all 

gridded rectangular regions.
• Allows us to detect both 

compact and elongated 
clusters (important 
because of wind- or water-
borne pathogens).

• Computationally efficient
• can evaluate any rectangular 

region in constant time
• can use fast spatial scan 

algorithm



2. Choose a set of spatial regions S to search.
• Our typical approach for 

disease surveillance:
• map spatial locations to grid
• search over the set of all 

gridded rectangular regions.
• Allows us to detect both 

compact and elongated 
clusters (important 
because of wind- or water-
borne pathogens).

• Computationally efficient
• can evaluate any rectangular 

region in constant time
• can use fast spatial scan 

algorithm

Can also search over 
non-axis-aligned 

rectangles by 
examining multiple 

rotations of the data
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H1(S), and derive a score function F(S).

• Most difficult steps: must choose models which are 
efficiently computable and relevant.

F(S) must be computable as function of 
some additive sufficient statistics of region S, 
e.g. total count C(S) and total baseline B(S).

Any simplifying assumptions should not 
greatly affect our ability to distinguish 

between clusters and non-clusters.

tradeoff!

Iterative design process

Test detection 
power

High power?
Y Calibrate

Done

N
Find unmodeled effect 
harming performance

Remove effect 
(preprocessing)?

Filter out regions 
(postprocessing)?

Add complexity 
to model?

Basic 
model

Discussion question: What effects 
should be treated with each technique?



Computing the score function
Method 1 (Frequentist, hypothesis testing approach):

Use likelihood ratio
)|Pr(
))(|Pr()(

0

1

HData
SHDataSF =

Method 2 (Bayesian approach):
Use posterior probability

)Pr(
))(Pr())(|Pr()( 11

Data
SHSHDataSF =

Prior probability of region S

What to do when each hypothesis has a parameter space Θ?

Method A (Maximum likelihood approach)

Method B (Marginal likelihood approach)
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Computing the score function
Method 1 (Frequentist, hypothesis testing approach):

Use likelihood ratio
)|Pr(
))(|Pr()(

0

1

HData
SHDataSF =

Method A (Maximum likelihood approach)
),|Pr(max)|Pr( )( θθ HDataHData HΘ∈=

Most common (frequentist) approach: use 
likelihood ratio statistic, with maximum likelihood 
estimates of any free parameters, and compute 

statistical significance by randomization.



5.  Find the most anomalous regions, i.e. 
those regions S with highest F(S).

• Naïve approach: compute F(S) for each spatial 
region S.

• Better approach: apply fancy algorithms (e.g. 
Kulldorf’s SatScan or the fast spatial scan
algorithm (Neill and Moore, KDD 2004).

Problem: millions of regions to search!
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5.  Find the most anomalous regions, i.e. 
those regions S with highest F(S).

• Naïve approach: compute F(S) for each spatial 
region S.

• Better approach: apply fancy algorithms (e.g. 
Kulldorf’s SatScan or the fast spatial scan
algorithm (Neill and Moore, KDD 2004).

Problem: millions of regions to search!

Using a multiresolution data structure 
(overlap-kd tree) enables us to 

efficiently move between searching at 
coarse and fine resolutions.

Start by examining large rectangular regions S.  If we can show that 
none of the smaller rectangles contained in S can have high scores, 

we do not need to individually search each of these subregions.

Result: 20-2000x speedups 
vs. naïve approach, without 
any loss of accuracy
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• Frequentist approach: calculate statistical significance of 
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6.  Determine whether each of these potential 
clusters is actually an anomalous cluster.  

• Frequentist approach: calculate statistical significance of 
each region by randomization testing.

D(S) = 21.2

D(S) = 18.5

D(S) = 15.1

Original grid G

…
D*(G1) = 16.7 D*(G999) = 4.2

1. Create R = 999 replica grids by sampling under H0, 
using max-likelihood estimates of any free params.

2. Find maximum region score D* for each replica.

3. For each potential cluster S, count Rbeat = number 
of replica grids G’ with D*(G’) higher than D(S).

4. p-value of region S = (Rbeat+1)/(R+1).

5. All regions with p-value < α are significant at level α.



6.  Determine whether each of these potential 
clusters is actually an anomalous cluster.  

• Bayesian approach: calculate posterior probability
of each potential cluster.

Original grid G

1. Score of region S = Pr(Data | H1(S)) Pr(H1(S))

2. Total probability of the data: Pr(Data) = 

Pr(Data | H0) Pr(H0) + ∑S Pr(Data | H1(S)) Pr(H1(S))

3. Posterior probability of region S: Pr(H1(S) | Data) =

Pr(Data | H1(S)) Pr(H1(S)) / Pr(Data).

4. Report all clusters with posterior probability > 
some threshold, or “sound the alarm” if total 

posterior probability of all clusters sufficiently high.

No randomization testing necessary… about 
1000x faster than naïve frequentist approach!



Making the spatial scan fast

Naïve frequentist scan 1000 replicas 

x 12 hrs / replica 

= 500 days!

256 x 256 grid = 1 billion regions!

Fast frequentist scan Naïve Bayesian scan

12 hrs (to search 
original grid)

1000 replicas

x 36 sec / replica

= 10 hrs

Fast Bayesian scan



Why the Scan Statistic speed obsession?

• Traditional Scan 
Statistics very 
expensive, 
especially with 
Randomization 
tests

• Going national
• A few hours 

could actually 
matter!



Results



Summary of results

• The fast spatial scan results in 
huge speedups (as compared 
to exhaustive search), making 
fast real-time detection of 
clusters feasible.

• No loss of accuracy: fast 
spatial scan finds the exact 
same regions and p-values as 
exhaustive search.

OTC data from National 
Retail Data Monitor

ED data



Performance comparison
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• On ED dataset (600,000 
records), 1000 replicas

• For SaTScan: M=17,000 
distinct spatial locations

• For Exhaustive/fast: 256 x 256 
grid
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fast spatial 
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429.853600 ns45 days1.1 trillionAxis-
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413.56400 ns16 hours150 billionCircles 
centered 
at datapts

SaTScan

Likelihood 
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Time / 
region

Search 
time (total)

Number 
of regions

Search 
space

Algorithm 
name

• On ED dataset (600,000 
records), 1000 replicas

• For SaTScan: M=17,000 
distinct spatial locations

• For Exhaustive/fast: 256 x 256 
grid

• Algorithms: Neill and Moore, NIPS 2003, KDD 2004
• Deployment: Neill, Moore, Tsui and Wagner, 

Morbidity and Mortality Weekly Report, Nov. ‘04



SC

d-dimensional partitioning
• Parent region S is divided into 2d 

overlapping children: an “upper child”
and a “lower child” in each dimension.

• Then for any rectangular subregion S’
of S, exactly one of the following is 
true:
– S’ is contained entirely in (at least) one 

of the children S1… S2d.
– S’ contains the center region SC, which 

is common to all the children.
• Starting with the entire grid G and 

repeating this partitioning recursively, 
we obtain the overlap-kd tree
structure.

S5 S1

S2

S3

S4

S6

S

• Algorithm: Neill, Moore and Mitchell NIPS 2004



Limitations of the algorithm

• Data must be aggregated to a grid.
• Not appropriate for very high-

dimensional data.
• Assumes that we are interested in 

finding (rotated) rectangular regions.
• Less useful for special cases (e.g. 

square regions, small regions only).
• Slower for finding multiple regions.



Related work

– non-specific clustering: evaluates general 
tendency of data to cluster

– focused clustering: evaluates risk w.r.t. a 
given spatial location (e.g. potential 
hazard)

– disease mapping: models spatial variation 
in risk by applying spatial smoothing.

– spatial scan statistics (and related 
techniques).


