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Abstract

We propose a new Bayesian method for spatial cluster detectine
“Bayesian spatial scan statistic,” and compare this methitite standard
(frequentist) scan statistic approach. We demonstratehbaBayesian
statistic has several advantages over the frequentisbapiprincluding
increased power to detect clusters and (since randomizégsting is
unnecessary) much faster runtime. We evaluate the Bayasiadrire-
quentist methods on the task of prospective disease danas! detect-
ing spatial clusters of disease cases resulting from emgdjsease out-
breaks. We demonstrate that our Bayesian methods are studces
rapidly detecting outbreaks while keeping number of falssitives low.

1 Introduction

Here we focus on the task gbatial cluster detection: finding spatial regions where some
quantity is significantly higher than expected. For example goal may be to detect
clusters of disease cases, which may be indicative of aalbturccurring epidemic (e.g.
influenza), a bioterrorist attack (e.g. anthrax releasedneenvironmental hazard (e.g. ra-
diation leak). [1] discusses many other applications o$teludetection, including mining
astronomical data, medical imaging, and military sureeide. In all of these applications,
we have two main goals: to identify the locations, shaped,siwes of potential clusters,
and to determine whether each potential cluster is mordyltkebe a “true” cluster or sim-
ply a chance occurrence. Thus we compare the null hypothlysis no clusters against
some set of alternative hypothegdsg(S), each representing a cluster in some region or
regionsS. In the standard frequentist setting, we do this by sigmifiestesting, computing
the p-values of potential clusters by randomization; here wegpse a Bayesian frame-
work, in which we compute posterior probabilities of eackepdial cluster.

Our primary motivating application igrospective disease surveillance: detecting spatial
clusters of disease cases resulting from a disease outbrethis application, we perform
surveillance on a daily basis, with the goal of finding emeggépidemics as quickly as
possible. For this task, we are given the number of casesmé sven syndrome type
(e.g. respiratory) in each spatial location (e.g. zip caeach day. More precisely, we
typically cannot measure the actual number of cases, atehihsely on related observable
guantities such as the number of Emergency Departmens \dsibver-the-counter drug
sales. We must then detect those increases which are indicdtemerging outbreaks,
as close to the start of the outbreak as possible, while kgahie number of false posi-
tives low. In biosurveillance of disease, every hour of ieadietection can translate into
thousands of lives saved by more timely administration dibéotics, and this has led to
widespread interest in systems for the rapid and automatextion of outbreaks.



In this spatial surveillance setting, each day we have daltaated for a set of discrete
spatial locations;. For each locatios;, we have aount ¢; (e.g. number of disease cases),
and an underlyindgpaseline bj. The baseline may correspond to the underlyingulation

at risk, or may be an estimate of the expected value of thetdqeus. derived from the
time series of previous count data). Our goal, then, is tofifitltere is any spatial region
S(set of locations;) for which the counts are significantly higher than expegcti@gen the
baselines. For simplicity, we assume here (as in [2]) tratdbationss are aggregated to a
uniform, two-dimensionalN x N grid G, and we search over the set of rectangular regions
SC G. This allows us to search both compact and elongated regalosing detection of
elongated disease clusters resulting from dispersal bbgans by wind or water.

1.1 Thefrequentist scan statistic

One of the most important statistical tools for cluster déta is Kulldorff's spatial scan
statistic [3-4]. This method searches over a given set of spatial nsgifinding those re-
gions which maximize a likelihood ratio statistic and thue most likely to be generated
under the alternative hypothesis of clustering rather tih@nnull hypothesis of no clus-
tering. Randomization testing is used to compute phealue of each detected region,
correctly adjusting for multiple hypothesis testing, ahds we can both identify potential
clusters and determine whether they are significant. Krfffddramework assumes that
countsc; are Poisson distributed withy ~ Pa(gb; ), whereb; represents the (known) cen-
sus population of celly andq is the (unknown) underlying disease rate. Then the goal of
the scan statistic is to find regions where the disease réiigher inside the region than

outside. The statistic used for this is the likelihood rdi®) = %, where the

null hypothesidHy assumes a uniform disease rgte gy. UnderH:(S), we assume that
g=qin foralls € S andq = qoy for all 5§ € G— S, for some constantg, > Qoit. From
this, we can derive an expression #1(S) using maximum likelihood estimates gfy,

Gout, andda: F(S) = (F2)%m (e )% (gl )~Can, if go > gt andF(S) = 1 otherwise.
In this expression, we haw@n = S sCi, Cout = Y 6_sGCi, Cal = 3 Ci, and similarly for the

baselineBj, = zsbi, Bout = ZG—Sbii andBy = >G bi.

Once we have found the highest scoring redtbr- argmaxF (S) of grid G, and its score
F* =F(S"), we must still determine the statistical significance o$ tlégion by random-
ization testing. To do so, we randomly create a large nurRladireplica grids by sampling
under the null hypothesis ~ Po(ggb;), and find the highest scoring region and its score

for each replica grid. Then thevalue ofS* is %, whereRyey is the number of repli-
casG’ with F* higher than the original grid. If thip-value is less than some threshold (e.g.
0.05), we can conclude that the discovered region is ugliteehave occurred by chance,

and is thus a significant spatial cluster; otherwise, noiiggmt clusters exist.

The frequentist scan statistic is a useful tool for clustgedtion, and is commonly used in
the public health community for detection of disease owtkse However, there are three
main disadvantages to this approach. First, it is diffiauitniake use of any prior informa-
tion that we may have, for example, our prior beliefs aboatdize of a potential outbreak
and its impact on disease rate. Second, the accuracy otttiigigue is highly dependent
on the correctness of our maximum likelihood parametemeg#s. As a result, the model
is prone to parameter overfitting, and may lose detectionepow practice because of
model misspecification. Finally, the frequentist scanistiatis very time consuming, and
may be computationally infeasible for large datasets. Aeapproach requires searching
over all rectangular regions, both for the original grid &mdeach replica grid. Since there
are O(N*) rectangles to search for ahx N grid, the total computation time ®(RN%),
whereR = 1000 is a typical number of replications. In past work [5, R v& have shown
how to reduce this computation time by a factor of 20-2000augh use of the “fast spatial
scan” algorithm; nevertheless, we must still perform taistér search both for the original
grid and for each replica.



We propose to remedy these problems through the use of aiBaygmtial scan statistic.
First, our Bayesian model makes use of prior informationualioe likelihood, size, and
impact of an outbreak. If these priors are chosen well, wailshachieve better detec-
tion power than the frequentist approach. Second, the Bayesethod uses marginal
likelihood approach, averaging over possible values of the model peasqin, gout, and
da, rather than relying on maximum likelihood estimates obthparameters. This makes
the model more flexible and less prone to overfitting, and ¢edhe potential impact of
model misspecification. Finally, under the Bayesian mduete is no need for randomiza-
tion testing, and (since we need only to search the origind) gven a naive search can be
performed relatively quickly. We now present the Bayesijaatial scan statistic, and then
compare it to the frequentist approach on the task of detgstmulated disease epidemics.

2 TheBayesan scan statistic

Here we consider the natural Bayesian extension of Kultds€an statistic, moving from

a Poisson to a conjugate Gamma-Poisson model. Bayesian &&uisson models are
a common representation for count data in epidemiology,reavé been used in disease
mapping by Clayton and Kaldor [7], Mo#i[8], and others. In disease mapping, the effect
of the Gamma prior is to produce a spatially smoothed mapsefdie rates; here we instead
focus on computing the posterior probabilities, allowirsga determine the likelihood that
an outbreak has occurred, and to estimate the location aedfpotential outbreaks.

For the Bayesian spatial scan, as in the frequentist appyeacwish to compare the null
hypothesisHp of no clusters to the set of alternative hypotheldetS), each representing
a cluster in some regio As before, we assume Poisson likelihoods; Po(gb;). The
difference is that we assume a hierarchical Bayesian mddelexthe disease ratgsg, dou,
andgy, are themselves drawn from Gamma distributions. Thus, uheenull hypothesis
Ho, we havey = gy for all 5 € G, wheregy ~ Ga(aqy, Bai ). Under the alternative hypoth-
esisH1(S), we haveq = g, for all 5 € Sandq = qo for all § € G— S, where we indepen-
dently drawgin ~ Ga&(Qin, Bin) anddout ~ Ga(Aout, Bout ). We discuss how the andp priors
are chosen below. From this model, we can compute the pospeababilitiesP(H1 (S) | D)

of an outbreak in each regio® and the probability?(Ho | D) that no outbreak has oc-
curred, given datas@: P(Ho| D) = PCLESPM0) andP(Hy(9) | D) = PEIAEIILE),
whereP(D) = P(D |Ho)P(Ho) + SsP(D |H1(S))P(H1(S)). We discuss the choice of prior
probabilitiesP(Ho) andP(H1(S)) below. To compute the marginal likelihood of the data
given each hypothesis, we must integrate over all poss#ilges of the parameterg(,
Jout» Jai) Weighted by their respective probabilities. Since we halvesen a conjugate
prior, we can easily obtain a closed-form solution for thidssihoods:

P(D|Ho) :/P(Qan ~ Ga(aa,Ball)) rLP(Ci ~ Pa(ga bi)) doa
SIS

P(D|H(S) = [ Plcin~ Galcin, i) [ P(6: ~ Polgify)) dan
SE

x / Pl ~ Galdou o)) [ _PI6s ~ Poldoalh)) ddou
S€G-

Now, computing the integral, and letti®= 3 ¢, andB = 3 b;, we obtain:
B a1 pqpq (Gbi)%e
P(q~ Gaa, P(ci ~Pa(gbi))dg= | —— e P ~—+——dqO
/Ba(q A ,B))D (ci ~Pa(q l)B)aq /r(a)q D B(f)!( C;
B [ a1 Byt ash gq_ P [ qatC 1y BBy B T(@+C)
I‘(a)/q e Tgrre e hda F(a)/q € 4= BrEEcr(o

Thus we have the following expressions for the marginallikeds: P(D | Hp) O
(Ba)%a! T (atay) +Cat) (Bin)%in I (@in+Cin) (Bout )M T (atout+Cout)
(BaII+BaJI)an|+C3“ r(ua“)’ andP(D | Hl(S)) O (Bin+Bin)ain+Cin r(“in) X (Bou(iBOUT>aOUt+OCOUt T (dou)




The Bayesian spatial scan statistic can be computed simypfirdb calculating the score
P(D|H1(S))P(H1(S)) for each spatial regiofs, maintaining a list of regions ordered by
score. We then calculaf®(D | Hp)P(Hp), and add this to the sum of all region scores, ob-
taining the probability of the data(D). Finally, we can compute the posterior probability

P(H1(S)|D) = w for each region, as well &Hy | D) = w. Then
we can return all regions with non-negligible posterioryabilities, the posterior probabil-
ity of each, and the overall probability of an outbreak. Nibi&t no randomization testing
is necessary, and thus overall complexity is proportioaalumber of regions searched,

e.g.O(N#) for searching over axis-aligned rectangles irNar N grid.

2.1 Choosing priors

One of the most challenging tasks in any Bayesian analydtseighoice of priors. For
any regionSthat we examine, we must have values of the parameter grigfS), Bin(S),
Oout (S), andPaut (S), as well as the region prior probabiliB(H1(S)). We must also choose
the global parameter prioosy; andfa, as well as the “no outbreak” priét(Ho).

Here we consider the simple case of a uniform region priah aiknown prior probability
of an outbreakP;. In other words, if there is an outbreak, it is assumed to hebg

likely to occur in any spatial region. Thus we ha®€Hy) = 1— Py, andP(H1(9)) = ni_leg'

whereN¢ is the total number of regions searched. The paranfgtean be obtained from
historical data, estimated by human experts, or can simplyded to tune the sensitivity
and specificity of the algorithm. The model can also be easigpted to a non-uniform

region prior, taking into account our prior beliefs abow #ize and shape of outbreaks.

For the parameter priors, we assume that we have accessrgganlanber of days of past
data, during which no outbreaks are known to have occurredcai then obtain estimated
values of the parameter priors under the null hypothesis &igining the moments of each
Gamma distribution to their historical values. In other dsyrwe set the expectation and
variance of the Gamma distribution 8y, ) to the sample expectation and variance

of Ca“ observed in past dat% Esample [Ba“} and dall — Varmme[ } Solving for
. . (Emple{%])z . Esample{%]
a1 andBa, we obtainoy = WMF‘%} andBq = Wm[%‘:]'

The calculation of priorsiin(S), Bin(S), dout (S), andBou (S) is identical except for two dif-
ferences: first, we must condition on the reg®mand second, we must assume the alterna-
tive hypothesi$i; (S) rather than the null hypothedit. Repeating the above derivation for
Cout (9 Cout (S)
(Esamp'E[Botﬁ )]) andBou (S) = Emp'e[som<5>s]
Valame| 52473 Valanpe| 2415 |
whereCoy (S) andBoy: (S) are respectively the total coufi_sci and total baseling g_sby
outside the region. Note that an outbreak in some re§idaes not affect the disease rate
outside regiorS Thus we can use the same valuesigh (S) andBou (S) whether we are

assuming the null hypothedi or the alternative hypothesi$; (S).

the “out” parameters, we obtainy (S) =

On the other hand, the effect of an outbreak inside re§imist be taken into account when
computingain(S) andBin(S); since we assume that no outbreak has occurred in the past
data, we cannot just use the sample mean and variance, butomssder what we expect
these quantities to be in the event of an outbreak. We asswanhthe outbreak will increase

Oin by a multiplicative factom, thus multiplying the mean and variance%f by m. To

account for this in the Gamma distribution @@, Bin), we multiply ai, by mwhile leaving

(Eaamse 3065 ])° Eanpie[ 5515 |

Vet 5] """ Vet 5]

Bin unchanged. Thus we haeg,(S) = m



whereCin(S) = ¥ ¢ andBin(S) = Ssbi. Since we typically do not know the exact value of
m, here we use a discretized uniform distributionffigprranging froom=1...3 atintervals
of 0.2. Then scores can be calculated by averaging likefih@wer the distribution ah.

Finally, we consider how to deal with the case where the palste¢ of the counts and
baselines are not given. In this “blind Bayesian” (BBayes3e; we assume that counts
are randomly generated under the null hypothesis Po(gob; ), whereqp is the expected
ratio of count to baseline under the null (for example,= 1 if baselines are obtained
by estimating the expected value of the count). Under thigple assumption, we can
easily compute the expectation and variance of the ratioofitto baseline under the null

hypothesis: ES| = m = %8 — g, and Var[§] = w = ‘E—ZB =P Thus
we havea = qpB andf = B under the null hypothesis. This givesag, = qoBa, Bal =
Bail, 0out (S) = qoBout (S), Bout (S) = Bowt (S), Ain(S) = MYpBin(S), andBin(S) = Bin(S). We
can use a uniform distribution fan as before. In our empirical evaluation below, we
consider both the Bayes and BBayes methods of generatiaghpéer priors.

3 Results: detection power

We evaluated the Bayesian and frequentist methods on tves typsimulated respiratory
outbreaks, injected into real Emergency Department andtbeecounter drug sales data
for Allegheny County, Pennsylvania. All data were aggredab the zip code level to
ensure anonymity, giving the daily counts of respiratory&3es and sales of OTC cough
and cold medication in each of 88 zip codes for one year. Thelive (expected count)
for each zip code was estimated using the mean count of théopee28 days. Zip code
centroids were mapped to a %66 grid, and all rectangles up to&3 were examined. We
first considered simulated aerosol releases of inhaldtartarax (e.g. from a bioterrorist
attack), generated by the Bayesian Aerosol Release DetectBARD [9]. The BARD
simulator uses a Bayesian network model to determine thebauwf spores inhaled by
individuals in affected areas, the resulting number an@rigvof anthrax cases, and the
resulting number of respiratory ED cases on each day of thiweak in each affected zip
code. Our second type of outbreak was a simulated “Fictibirar Onset Outbreak”
(or “FLOQ"), as in [10]. A FLOOQ,T) outbreak is a simple simulated outbreak with
durationT, which generatetA cases in each affected zip code on daf the outbreak
(0 <t <T/2), then generateEA/2 cases per day for the remainder of the outbreak. Thus
we have an outbreak where the number of cases ramps up Vir@atlthen levels off.
While this is clearly a less realistic outbreak than the BARBwlated anthrax attack, it
does have several advantages: most importantly, it all@is precisely control the slope
of the outbreak curve and examine how this affects our metraatection ability.

To test detection power, a semi-synthetic testing framkwanilar to [10] was used: we
first run our spatial scan statistic for each day of the las¢ mnonths of the year (the first
three months are used only to estimate baselines and pramd)obtain the score* for
each day. Then for each outbreak we wish to test, we injetbtitareak into the data, and
obtain the scor€&*(t) for each day of the outbreak. By finding the proportion of baseline
days with scores higher tha (t), we can determine the proportion of false positives we
would have to accept to detect the outbreak ontdalhis allows us to compute, for any
given level of false positives, what proportion of outbrealan be detected, and the mean
number of days to detection. We compare three methods ofatmgthe scoré *: the fre-
quentist methodR* is the maximum likelihood rati& (S) over all regionsS), the Bayesian
maximum methodK* is the maximum posterior probabili§(H1(S) | D) over all regions
S), and the Bayesian total methde(is the sum of posterior probabiliti€H;(S)| D) over

all regionss i.e. total posterior probability of an outbreak). For thtBayesian methods,
we consider both Bayes and BBayes methods for calculatiogspthus giving us a total
of five methods to compare (frequentist, Bayeax, BBayesmax, Bayegot, BBayestot).

In Table 1, we compare these methods with respect to propasfioutbreaks detected and



Table 1: Days to detect and proportion of outbreaks detedtéalse positive/month
FLOO_ED FLOO.ED FLOO.ED BARD_ED BARD_ED FLOO.OTC FLOQOTC

method (4,14) (2,20) (1,20) (.125) (.016) (40,14) (25,20)
frequentist 1.859 3.324 6.122 1.733 3.025 3582 5.393
(100%) (100%) (96%) (100%) (88%) (100%) (100%)
Bayesmax 1.740 2.875 5.043 1.600 3.755 5.455 7.588
(100%) (100%) (100%) (100%) (88%) (63%) (79%)
BBayesmax 1683 2848 4,984 1.600 3.698 5.164 7.035
(100%) (100%) (100%) (100%) (88%) (65%) (77%)
Bayestot 1.882 3.195 5.777 1.633 3.811 3475 5195
(100%) (100%) (100%) (100%) (88%) (100%) (100%)
BBayesiot 1.840 3.180 5672 1617 3.792 4.380 6.929
(100%) (100%) (100%) (100%) (88%) (100%) (99%)

mean number of days to detect, at a false positive rate ofrittmdlethods were evaluated
on seven types of simulated outbreaks: three FLOO outb@akd data, two FLOO out-
breaks on OTC data, and two BARD outbreaks (with differenbants of anthrax release)
on ED data. For each outbreak type, each method’s perfoenaas averaged over 100 or
250 simulated outbreaks for BARD or FLOO respectively.

In Table 1, we observe very different results for the ED an€C@&atasets. For the five runs
on ED data, all four Bayesian methods consistently detemi¢ioreaks faster than the fre-
guentist method. This difference was most evident for theenstowly growing (harder to
detect) outbreaks, especially FLOO(1,20). Across all Eibeaks, the Bayesian meth-
ods showed an average improvement of between 0.13 days {B#tyeand 0.43 days
(BBayesmax) as compared to the frequentist approach; “max” metped®rmed sub-
stantially better than “tot” methods, and “BBayes” methpdsformed slightly better than
“Bayes” methods. For the two runs on OTC data, on the othed haost of the Bayesian
methods performed much worse (over 1 day slower) than tlygiémtist method. The ex-
ception was the Baye®t method, which again outperformed the frequentist mathoan
average of 0.15 days. We believe that the main reason foe thiffering results is that the
OTC data is much noisier than the ED data, and exhibits muongetr seasonal trends.
As a result, our baseline estimates (using mean of the preA8 days) are reasonably ac-
curate for ED, but for OTC the baseline estimates will lagibehhe seasonal trends (and
thus, underestimate the expected counts for increasinggr@nd overestimate for decreas-
ing trends). The BBayes methods, which assu@/B] = 1 and thus rely heavily on the
accuracy of baseline estimates, are not reasonable for OmG@he other hand, the Bayes
methods (which instead learn the priors from previous coant baselines) can adjust for
consistent misestimation of baselines and thus more aetyieccount for these seasonal
trends. The “max” methods perform badly on the OTC data kexaularge number of
baseline days have posterior probabilities close to 1;igdaise, the maximum region pos-
terior varies wildly from day to day, depending on how muchtia# total probability is
assigned to a single region, and is not a reliable measurénefher an outbreak has oc-
curred. The total posterior probability of an outbreak, lmaather hand, will still be higher
for outbreak than non-outbreak days, so the “tot” methodspform well on OTC as
well as ED data. Thus, our main result is that the Baypésnethod, which infers baselines
from past counts and uses total posterior probability ofithreak to decide when to sound
the alarm, consistently outperforms the frequentist netfboboth ED and OTC datasets.

4 Results: computation time

As noted above, the Bayesian spatial scan must search dvectaingular regions for the
original grid only, while the frequentist scan (in order tdaulate statistical significance by
randomization) must also search over all rectangular nsgior a large number (typically
R=1000) of replica grids. Thus, as long as the search time ge&mnés comparable for the
Bayesian and frequentist methods, we expect the Bayesfaoagh to be approximately
1000x faster. In Table 2, we compare the run times of the BayBayes, and frequen-



Table 2: Comparison of run times for varying grid side

method N=16 N=32 N =64 N =128 N =256
Bayes (naive) 0.7sec | 10.8sec| 2.8min 44 min 12 hrs
BBayes (naive) 0.6sec| 9.3sec | 2.4min 37 min 10 hrs
frequentist (naive)| 12 min 2.9hrs 49 hrs ~31 days | ~500 days
frequentist (fast) | 20sec | 1.8 min | 10.7 min 77 min 10 hrs

tist methods for searching a single grid and calculatingifitance p-values or posterior
probabilities for the frequentist and Bayesian methodpeetively), as a function of the
grid sizeN. All rectangles up to siz&l/2 were searched, and for the frequentist method
R = 1000 replications were performed. The results confirm otuition: the Bayesian
methods are 900-1200x faster than the frequentist apprdachall values ofN tested.
However, the frequentist approach can be accelerated tcathausing our “fast spatial
scan” algorithm [2], a multiresolution search method whietm find the highest scoring
region of a grid while searching only a small subset of regid@omparing the fast spatial
scan to the Bayesian approach, we see that the fast spatiissslower than the Bayesian
method for grid sizes up td = 128, but slightly faster foN = 256. Thus we now have two
options for making the spatial scan statistic computatlpriaasible for large grid sizes:
to use the fast spatial scan to speed up the frequentist ttgstis, or to use the Bayesian
scan statistics framework (in which case the naive algeorithtypically fast enough). For
even larger grid sizes, it may be possible to extend the fastiad scan to the Bayesian
approach: this would give us the best of both worlds, seagchinly one grid, and using a
fast algorithm to do so. We are currently investigating gogentially useful synthesis.

5 Discussion

We have presented a Bayesian spatial scan statistic, andndtnated several ways in
which this method is preferable to the standard (frequBrgtsan statistics approach. In
Section 3, we demonstrated that the Bayesian method, wighatively non-informative
prior distribution, consistently outperforms the fregtisnmethod with respect to detec-
tion power. Since the Bayesian framework allows us to easdgrporate prior informa-
tion about size, shape, and impact of an outbreak, it isylikeat we can achieve even
better detection performance using more informative prierg. obtained from experts in
the domain. In Section 4, we demonstrated that the Bayepatiabscan can be computed
in much less time than the frequentist method, since ranzition testing is unnecessary.
This allows us to search large grid sizes using a naive sedgctithm, and even larger
grids might be searched by extending the fast spatial sctretBayesian framework.

We now consider three other arguments for use of the Bayagiatial scan. First, the
Bayesian method has easily interpretable results: it asitihe posterior probability that
an outbreak has occurred, and the distribution of this fitibaover possible outbreak
regions. This makes it easy for a user (e.g. public healteialfito decide whether to
investigate each potential outbreak based on the costtsefgasitives and false negatives;
this type of decision analysis cannot be done easily in thguientist framework. Another
useful result of the Bayesian method is that we can computeap® of the posterior proba-
bilities of an outbreak in each grid cell, by summing the pdst probabilitied?(H1(S) | D)

of all regions containing that cell. This technique allovgga deal with the case where the
posterior probability mass is spread among many regionghsgrving cells which are
common to most or all of these regions. We give an exampleaf aumap below:

Figure 1: Output of Bayesian spatial scan on baseline OTC data, 1/30/05.
Cell shading is based on posterior probability of an outbreak in that cell,
ranging from white (0%) to black (100%). The bold rectangle represents
the most likely region (posterior probability 12.27%) and the darkest cell
is the most likely cell (total posterior probability 86.57%). Total posterior
probability of an outbreak is 86.61%.




Second, calibration of the Bayesian statistic is easien tt®ibration of the frequentist
statistic. As noted above, it is simple to adjust the serisitand specificity of the Bayesian
method by setting the prior probability of an outbre®k and then we can “sound the
alarm” whenever posterior probability of an outbreak exisesome threshold. In the fre-
guentist method, on the other hand, many regions in the ihasgata have sufficiently
high likelihood ratios that no replicas beat the originatigthus we cannot distinguish the
p-values of outbreak and non-outbreak days. While one aligenia to “sound the alarm”
when the likelihood ratio is above some threshold (rathan tithenp-value is below some
threshold), this is technically incorrect: because thelyass for each day of data are dif-
ferent, the distribution of region scores under the nulldtigsis will also differ from day
to day, and thus days with higher likelihood ratios do notassarily have lowep-values.
Third, we argue that it is easier to combine evidence fromtiplal detectors within the
Bayesian framework, i.e. by modeling the joint probabitifgtribution. We are in the pro-
cess of examining Bayesian detectors which look simultasigaat the day’s Emergency
Department records and over-the-counter drug sales i tod#etect emerging clusters,
and we believe that combination of detectors is an impodess for future research.

In conclusion, we note that, though both Bayesian modelt§][and (frequentist) spa-
tial scanning [3-4] are common in the spatial statistierditure, this is (to the best of our
knowledge) the first model which combines the two technido&sa single framework.
In fact, very little work exists on Bayesian methods for sgdatluster detection. One no-
table exception is the literature on spatial cluster maggli1-12], which attempts to infer
the location of cluster centers by inferring parameters Bagesian process model. Our
work differs from these methods both in its computationattability (their models typi-
cally have no closed form solution, so computationally exgdee MCMC approximations
are used) and its easy interpretability (their models givéndication as to statistical sig-
nificance or posterior probability of clusters found). Thus believe that this is the first
Bayesian spatial cluster detection method which is powerfd useful, yet computation-
ally tractable. We are currently running the Bayesian aedentist scan statistics on
daily OTC sales data from over 10000 stores, searching fergimg disease outbreaks on
a daily basis nationwide. Additionally, we are working tdend the Bayesian statistic to
fMRI data, with the goal of discovering regions of brain wgityi corresponding to given
cognitive tasks [13, 6]. We believe that the Bayesian apgrdes the potential to improve
both speed and detection power of the spatial scan in thisooas well.
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